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Monte Carlo Method for Determining Earthquake Recurrence 
Parameters from Short Paleoseismic Catalogs; Example 
Calculations for California  
 
Tom Parsons, USGS MS-999, 345 Middlefield Rd. Menlo Park, CA 94025 (650) 329-5074, tparsons@usgs.gov 

 

Abstract 
Paleoearthquake observations often lack enough events at a given site to directly define a 
probability density function (PDF) for earthquake recurrence. Sites with fewer than 10-15 
intervals do not provide enough information to reliably determine the shape of the PDF using 
standard maximum-likelihood techniques [e.g., Ellsworth et al., 1999]. In this paper I present a 
method that attempts to fit wide ranges of distribution parameters to short  paleoseismic series. 
From repeated Monte Carlo draws, it becomes possible to quantitatively estimate most likely 
recurrence PDF parameters, and a ranked distribution of parameters is returned that can be used 
to assess uncertainties in hazard calculations. In tests on short synthetic earthquake series, the 
method gives results that cluster around the mean of the input distribution, whereas maximum 
likelihood methods return the sample means [e.g., NIST/SEMATECH, 2006]. For short series 
(fewer than 10 intervals), sample means tend to reflect the median of an asymmetric recurrence 
distribution, possibly leading to an overestimate of the hazard should they be used in probability 
calculations. Therefore a Monte Carlo approach may be useful for assessing recurrence from 
limited paleoearthquake records. Further, the degree of functional dependence among parameters 
like mean recurrence interval and coefficient of variation can be established. The method is 
described for use with time-independent and time-dependent PDF’s, and results from 19 
paleoseismic sequences on strike-slip faults throughout the state of California are given.  

1. Introduction 
This paper describes a method for estimating most-likely values and resolution on earthquake 

recurrence interval and coefficient of variation from paleoseismic and historic earthquake 
records. Even long paleoseismic catalogs cannot generate a complete probability density function 
(PDF) on recurrence (Figure 1) [Savage, 1994]. Further, inconsistent statistical practice between 
recurrence estimation and earthquake probability calculations can be a concern [e.g., Savage, 
1991; 1992]. Optimally, we would have enough observations of earthquake intervals to fill out 
recurrence PDF’s; these would eliminate the epistemic uncertainties surrounding recurrence 
parameters, and define the aleatory uncertainty inherent in earthquake recurrence. Unfortunately, 
we lack the data to do that. In this paper I show that, by making one decision about the class of 
recurrence PDF, that PDF can be used to model observed paleoseismic sequences. As will be 
shown, Monte Carlo fitting tends to be most useful on short sequences and seems primarily 
sensitive to the histogram of the data. Results reflect epistemic uncertainties by showing the 
range and uncertainty in distribution parameters that are consistent with observations and their 
uncertainties. A further issue addressed by this analysis is that of coupled recurrence parameters.  
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1.1 Example 
To highlight some of the issues addressed in this paper, I show an example calculation made 

from paleoseismology on the south Hayward fault in the San Francisco Bay region of California. 
Lienkaemper et al. [2003] reported the series of events given in Table 1. 
 
 

Min Interval Max Interval Preferred
Old Young

138 138 138
1868 1868 78 218 148
1650 1790 0 260 130
1530 1740 0 360 180
1380 1590 0 360 180
1230 1410 0 410 205
1000 1270 0 360 180
910 1010 10 260 135
750 900 70 510 290
390 680 0 400 200
280 640 0 450 225
190 550

Calendar Age 

Open to 2006

 
Table 1. South Hayward fault paleoseismic catalog 
 

The mean interval is 151 years (calculated by dividing time between the midpoint of the oldest 
event and the date of the youngest event by the number of intervals) and the distribution of 
preferred intervals is shown in Figure 1. Translation of a mean interval, like the 151-yr south 
Hayward calculation into an exponential function, or an asymmetric, time-dependent distribution 
such as lognormal [e.g., Nishenko and Buland, 1987], Weibull [Hagiwara, 1974], or Brownian 
Passage Time [Kagan and Knopoff, 1987; Matthews et al., 2002] illustrates some of the 
difficulty in constraining a recurrence distribution with even a fairly lengthy paleoseismic series 
(Figure 1).  
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Figure 1: Observed preferred (dating interval centers) earthquake interevent times on the 
south Hayward fault from Table 1 [Lienkaemper et al., 2003] shown in pale blue; the 
arithmetic mean of the intervals is ~150 yrs. Purple and blue curves are Brownian Passage 
Time (BPT) distributions with μ=150 yr, α=0.6 and μ =170 yr, α =0.2 mean-coefficient of 
variation pairings respectively. Red and green curves show exponential distributions. 

 

Exponential distributions as defined by  

 

f (t) = λe−λt, for t > 0            (1) 

 

where t is time, and λ is the mean rate, and Brownian Passage Time distributions as 

 

f (t,μ,α) =
μ

2πα 2t 3 exp −
t − μ( )2

2μα 2t

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,                 (2) 

where μ is recurrence interval or its proxy and α is coefficient of variation, are also plotted in 
Figure 1.  
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From the plot of event mid-times (center of dating interval) it appears that the Hayward fault 
has an orderly series that does not look like a Poisson process; lacking are observations of short 
recurrence times that would be expected if the south Hayward fault ruptured randomly in time. 
However, if all possible event times are bootstrapped from the dating intervals, then the 
possibility of short-interval events arises (Figure 2). Thus it is probably not possible to 
distinguish whether earthquake recurrence on the south Hayward fault is distributed according to 
an exponential or a time-dependent distribution [e.g., Matthews et al., 2002]. However, in other 
places it may be possible; for example, Ogata [1999] found a poor fit to exponential distributions 
for paleoseismic sites in Japan. 
 

 

Figure 2: Bootstrapped earthquake interevent times on the south Hayward fault. When all 
possible interevent times are included, the distribution looks more exponential than the plot 
of event centers shown in Figure 1. Best-fit exponential and Brownian Passage Time 
distributions are plotted.   
 
Depending on the application, there may be a desire to use exponential distributions to 

characterize faults like the Hayward, such as in the National Seismic Hazard Map Program [e.g., 
Frankel et al., 2002]. Alternatively, the same fault segment may be characterized by time-
dependent distributions [e.g., Working Group on California Earthquake Probabilities (WGCEP), 
2003]. For consistent statistical practice, recurrence parameters and their uncertainties should be 
developed specifically using the PDF’s from which earthquake probabilities will be calculated. 
For the most part, paleoseismic data cannot help us choose which PDF to use, and the decision 
must be made from other criteria. The methods shown in this paper enable any distribution to be 
fit to paleoseismic observations, and no resolution between distributions is implied. Rather, one 
can investigate the impact of any given recurrence PDF on probabilistic hazard calculations.   
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1.2 Current methods 
The methods described in this paper differ from other recurrence parameter estimation 

techniques. Most commonly, variants of maximum-likelihood techniques are applied to observed 
series to estimate recurrence parameters [e.g., Nishenko and Buland, 1987; Davis et al., 1989; 
Wu et al., 1991; Ogata, 1999]. To account for dating uncertainty, Ellsworth et al. [1999] 
developed a process in which carbon-dating-PDF’s of paleoseismic intervals were bootstrapped, 
and then results were used to develop Brownian Passage Time (BPT, also know as the inverse 
Gaussian distribution) parameters for recurrence interval and coefficient of variation using a 
maximum likelihood technique. Biasi et al. [2002] applied a similar method for lognormal 
distribution parameters. When there are few events, a large number of short earthquake series are 
produced. Each short series still suffers the same poor resolution for predicting the shape of  
recurrence PDF’s; for example, Ellsworth et al. [1999] showed that a series of 10 events could 
constrain recurrence coefficient of variation within a range of about 0.2 to 0.8.  

As an example, let us assume from Table 1 that the Hayward fault has a ~150-yr average 
recurrence interval, and for simplicity, that recurrence is distributed as an exponential function. 
To illustrate resolution issues, I sampled a 150-yr mean exponential distribution, gathering 5,11, 
and 25 event sequences at random. The distribution of arithmetic means form these randomly 
sampled series is shown in Figure 3. Only about 10-15% of these series with less than 25 events 
has a mean within ±10 years of the parent distribution. Thus the arithmetic mean of any given 
11-event series has a small probability of representing the actual mean recurrence interval on a 
fault segment. I used maximum likelihood techniques [StataCorp., 2005] to find the exponential 
rate parameter on these synthetic series, which returned, as expected, equivalent values to the 
arithmetic sample means. A maximum-likelihood estimate of BPT distribution parameters for the 
south Hayward series shown in Figure 1 yielded a mean recurrence interval of μ=155 yr [W. 
Ellsworth, written communication, 2007], also very close to the arithmetic mean for that series 
(Figure 1).  

The methods described in this paper yielded a recurrence interval range of μ=90-340 yr at 
95% confidence, and μ=120-230 yr at 67% confidence from the same data. The method tries 
every reasonable recurrence PDF in a forward sense millions of times, and parameter sets that 
reproduce observed sequences within age uncertainties significantly more often are considered 
the most likely PDF’s. The method is most effective at filling in gaps posed by very sparse 
sequences, and/or series with poorly constrained event dates.  

In this paper I first show methods for modeling the rate term (λ) for the exponential 
distribution. Then the discussion is expanded to include time-dependent distribution parameters 
that include mean recurrence interval and coefficient of variation. Example calculations are made 
for a compilation of California paleoseismic sites. 
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Figure 3: Distribution of arithmetic means of 5-, 11-, and 25-event series randomly 
sampled from a parent exponential distribution with a 150-yr mean. Only about 10-15% of 
the series have means within ±10 years of the parent distribution mean for series with 
fewer than 25 events. Techniques for determining distribution parameters such as 
maximum likelihood estimators are sensitive to the arithmetic mean, and thus may suffer 
from poor resolution on short series.   
 

1.3 Paleoseismic data 
1.3.1 Data sources. A statewide database of California paleoseismic  observations was 

assembled for the Working Group on California Earthquake Probability (WGCEP) by T. Dawson 
and R. Weldon that is available from the WGCEP Paleosites database. The data represent 
published and unpublished contributions for major strike-slip fault zones in California including 
the San Andreas fault in southern and central California [Fumal et al., 2002a; 2002b; Grant and 
Sieh, 1994; Liu et al., 2004; Sims, 1994; Biasi et al., 2002; Seitz et al., 1996; 2000; McGill et al., 
2002; Yule and Sieh, 2001; Sieh, 1986; Weldon et al., 2004], the Elsinore fault [T. Rockwell, 
unpublished data, 2006; Vaughan et al., 1999], the San Jacinto fault [Rockwell et al., 2006; 
Gurrola and Rockwell, 1996], the Garlock fault [Dawson et al., 2003; C. H. Madden, 
unpublished data, 2006], the San Andreas fault in northern California [Fumal et al., 2003; Zhang 
et al., 2006], the Hayward fault [Lienkaemper et al., 2003], the San Gregorio fault [Simpson et 
al., 1997], and the Calaveras fault [Kelson et al., 1996; Simpson et al., 1999].  
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1.3.2 Uncertainty associated with paleoseismic data.   
In the absence of a long term historical earthquake catalog, paleoseismic observations 

provide perhaps the only non-model-derived earthquake rate estimates that can be used for 
probabilistic forecasting. Considerable uncertainty is involved in developing a paleoearthquake 
catalog [e.g., Grant and Gould, 2004], much of which results from dating stratigraphic layering 
and the events that disturb such layers [e.g., Biasi et al., 2002]. A very informative summary of 
issues surrounding radiocarbon dating, sample collection, and preparation is given by Fumal et 
al. [2002a]. Less quantifiable uncertainty can result from how earthquake features are interpreted 
within a trench site in terms of which types of disturbances result from large earthquakes. Data 
and interpretations from the California sites analyzed in this paper have been vetted through 
multiple reviews for consistency of geologic approach [Grant and Lettis, 2002].  

Another issue with interpreting paleoseismic data stems from the possibility of missing 
events in the record. Seismologists examining instrumental earthquake catalogs have suggested 
that large earthquakes may cluster closely in time on the same fault [Kagan and Jackson, 1999]. 
However, most paleoseismic series are interpreted under a quasi-periodic characteristic 
earthquake model [Schwartz and Coppersmith, 1984], and tend not to indicate clustering (see 
Tables 1 and 2). At least three explanations are possible: (1) two or more earthquakes striking the 
same fault in a short time could look very much like a single event, (2) earthquakes might 
happen that leave no trace at a paleoseismic site, or (3) seismologists interpreting earthquake 
doublets on the same fault are working at a very different spatial resolution than are 
paleoseismologists, and could actually be seeing earthquakes rupturing neighboring fault planes. 
Therefore recurrence parameters derived from paleoseismic observations may carry potential 
sources of uncertainty beyond those explicitly quantified.  

The analysis presented here provides methods for considering dating uncertainty, and open 
intervals before, during, and after observed paleoseismic events. However the data are not 
sufficient to determine whether a quasi-periodic or anti-periodic earthquake recurrence model is 
more appropriate. Thus both types of recurrence distributions are used.  

2. Monte Carlo determination of exponential parameters  
Here it is assumed that if an exponential distribution is used to calculate earthquake 

probability, then the best distribution parameters to use are those that most commonly reproduce 
an observed paleoseismic sequence. The first step is construction of a series of distributions that 
covers all reasonable rates (10 years to 10 times the sample mean recurrence). Intervals are 
randomly drawn millions of times from each series and assembled into earthquake sequences 
(Figure 4).  
 Those sequences that have one earthquake occurring in order during each observed event 
windows (range of possible event times as constrained by radio carbon dating), and no 
earthquakes in the intervals between event windows are tallied. The examples shown in this 
paper use a uniform distribution for the event time-window defined by dating uncertainty, and an 
event that happens at any time within the window is considered a match. A refinement to the 
technique would be weighting of solutions by comparison with the event PDF’s defined by radio 
carbon dating analysis. At the time of this writing, event PDF’s were not uniformly available for 
California sites. It should be noted that an event PDF is defined here as the distribution of 
possible ages for a single event derived from dating uncertainty, and should not be confused with 
the recurrence PDF, which is the distribution of possible earthquake recurrence times.  

 

7 



   

 

Figure 4: Paleoseismic intervals from the Burro Flats site [Yule and Sieh, 2001]; the gray 
band is the open interval since the last earthquake, the red bands show periods in which 
earthquakes happened, the white bands are intervals in which they did not occur. The 
bottom red band is the open interval before the first observed event in which any number 
of earthquakes may have happened. One hundred randomly drawn earthquake series from 
an exponential PDF with mean interval of 180 yr are shown by small blue arrows. None of 
the first 100 attempts fit the record. Clustering behavior inherent with the exponential 
distributions is evident.  
 

Each exponential distribution (recurrence PDF) for a given rate is randomly sampled 5 
million times. Each attempt that matches a paleoseismic catalog is tallied. A distribution of 
matches to the observed record is produced (Figure 5), and the mode (most frequent value), 
median, or mean of that distribution could be taken to represent the recurrence parameter (rate, 
or the inverse of the mean recurrence in the case of the exponential distribution). This approach 
simultaneously incorporates epistemic uncertainty related to dating intervals, and aleatory 
uncertainty related to natural interval variation.  

In the examples discussed in this paper, the Mote Carlo sequences begin with an event that is 
given freedom to happen any time prior to the first observed earthquake time window. The extra 
event contributes nothing other than a starting point for the sampling. This is needed because the 
first observed time window has some range within which the event might have happened, 
whereas Monte Carlo simulation must begin at a point in time. It is expected that that an 
earthquake occurred prior to the first identified event in each paleoseismic series, but we have no 
knowledge of it other than that. To avoid the starting time having any influence, any number of 
events are allowed to happen over a long time prior to the first observed window. Conversely, 
simulations that include earthquakes within the open interval (or any other open interval) 
between the latest earthquake in the catalog and present time are discarded.  
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 Lat Lon Mode Median Mean 2.5% 97.5% 16.5% 83.5% T min T max Events RI Min RI Max RI Pref.
Calaveras fault - North 37.5104 -121.8346 440 640 799 230 2280 370 1160 1861 2381 5 595 372 484
Elsinore - Glen Ivy 33.7701 -117.4909 150 180 232 80 620 120 310 794 947 6 159 189 174
Elsinore Fault - Julian 33.2071 -116.7273 850 1540 1855 400 4570 760 3080 N/A N/A 2 N/A N/A N/A
Elsinore - Temecula 33.4100 -117.0400 1310 1620 1842 460 4350 880 2800 1200 1800 4 400 600 500
Elsinore - Whittier 33.9303 -117.8437 850 1630 1925 410 4610 790 3190 N/A N/A 2 N/A N/A N/A
Garlock - Central 35.4441 -117.6815 1490 1430 1603 520 3810 840 2200 6120 6640 6 1224 1328 1276
Garlock - Western 34.9868 -118.5080 1080 1420 1616 500 3790 830 2370 3920 5350 5 980 1338 1159
Hayward fault - North 37.9306 -122.2977 260 290 343 140 750 200 460 1830 2166 5 261 542 401
Hayward fault - South 37.5563 -121.9739 160 170 189 90 340 120 230 1318 1678 11 132 168 150
N. San Andreas - North Coast 38.0320 -122.7891 N/A N/A N/A N/A N/A N/A N/A 2566 2896 12 233 263 248
SAF - Arano Flat 36.9415 -121.6729 110 120 141 60 270 80 180 796 896 9 100 112 106
N. San Andreas -  Fort Ross 38.5200 -123.2400 220 340 456 130 1300 200 670 956 1351 5 239 338 288
San Gregorio - North 37.5207 -122.5135 440 980 1327 220 4160 440 2260 N/A N/A 2 N/A N/A N/A
San Jacinto - Hog Lake 33.6153 -116.7091 N/A N/A N/A N/A N/A N/A N/A 3500 4000 16 233 267 250
San Jacinto - Superstition 32.9975 -115.9436 240 390 552 110 1940 200 830 476 823 3 238 412 325

South San Andreas sites Lat Lon Mode Median Mean 2.5% 97.5% 16.5% 83.5% Events RI Min RI Max RI Pref.
San Andreas - Burro Flats           33.9730 -116.8170 140 180 226 90 460 130 320 7 85 559 176
SAF - Combined Carrizo Plain     35.1540 -119.7000 190 290 341 120 810 180 470 6 108 640 235
San Andreas - Indio  33.7414 -116.1870 170 250 361 90 1170 140 550 4 96 904 246
San Andreas - Pallett Creek 34.4556 -117.8870 N/A N/A N/A N/A N/A N/A N/A 10 74 283 136
San Andreas - Pitman Canyon     34.2544 -117.4340 130 160 191 80 440 110 250 7 75 382 154
San Andreas - Plunge Creek   34.1158 -117.1370 140 210 349 80 1480 120 480 3 58 820 169
Mission Creek - 1000 Palms 33.8200 -116.3010 160 260 336 100 930 150 500 5 102 728 236
San Andreas - Wrightwood        34.3697 -117.6680 N/A N/A N/A N/A N/A N/A N/A 15 60 175 98

Time
0774-2006

Modeled Parameters Time/Intervals Method

0598-2006
1020-2006

0533-2006

0645-2006
0931-2006
1499-2006
0824-2006

 

Table 2. Analysis results of 19 paleoseismic sites in California using an exponential PDF. 
Also given are mean recurrence intervals calculated by dividing the total time by the 
number of intervals. T min and T max are the minimum and maximum allowable 
cumulative observation intervals. Event ages calculated by T. Dawson [references given in 
Section 1.3], except the southern San Andreas sites, which were calculated by Biasi et al. 
[2002]. Reported confidences are upper and lower one-sided intervals.  

 
Monte Carlo results provide a set of rates that fit observed paleoseismic sequences for use in 

time-independent earthquake probability calculations. There are a number of possible approaches 
for using these rates; one can use every value and produce a distribution of probabilities [e.g., 
Savage, 1991; 1992; Parsons et al., 2000, Parsons, 2005], or a central value and confidence 
intervals can be extracted. For a central value from the Hayward example, the mode, median, or 
mean of of the distribution (160, 170, or 189 yr respectively) might be interpreted as the most 
likely value; 95% of the frequencies fall in the range between 90 and 340 years, and 67% are 
found between 120 and 230 years. Example distributions of exponential parameters from a 
number of other California sites are shown in Figure 5, which cover a broad range in terms 
earthquake intervals and total duration.  

An attempt was made to fit earthquake sequences from 23 California paleoseismic sites using 
exponential PDF’s. Sequences varied from 2 to 16 events spanning a total of ~500 to 6000 years. 
As a result, resolution on recurrence intervals differed strongly, depending on the site (Table 2). 
Relative resolution is defined here by the ratio of the mean recurrence interval and width of 
confidence intervals. The most numerous paleoseismic sequences were difficult to fit to any 
exponential distribution, and four sites (parameters labeled “N/A” in Table 2) were not fit even 
after trying 10 million times per frequency. However, broad estimates were obtained for two 
sites with only two events each which could not be estimated using a time/intervals method 
(Table 2).  
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Figure 5. Example distributions of exponential frequencies fit to various California 
paleoseismic sites. Source: Working Group on California Earthquake Probabilities 
(WGCEP) paleosites database. 
 

The most likely exponential distributions extrapolated from the paleoseismic record tend to 
have slightly higher mean intervals than the arithmetic means of observed records on average. 
The mean recurrence interval for all comparable events was 497 yr using a Monte Carlo method 
and 380 yr using a time/intervals method [T. Dawson, unpublished data; Biasi et al., 2002]. 
Different recurrence intervals are expected from the Monte Carlo method because open intervals 
are accounted for [e.g., Ogata, 1999]; allowing a simulated event to occur any time prior to the 
first observed event and disallowing events within the last open interval most closely represents 
the state of knowledge, but also has the effect of slightly lengthening recurrence-interval 
estimates. The impact of open intervals is greatest on sites with the fewest number of events, 
because they make up a greater proportion of the overall number of intervals.   

Perhaps more important than open intervals, there are other factors that influence differences 
in calculated recurrence intervals between time/intervals methods and the Monte Carlo results, 
which may be revealed by examining Figure 3. Because of the shape of the parent exponential 
distribution, randomly sampled synthetic paleoseismic series tended more often to have shorter 
mean values than the parent distribution. Since most California paleoseismic sites have relatively 
short earthquake records, and if the actual parent distributions governing earthquake behavior are 
asymmetric (with medians less than means), odds are that sample means are smaller than the 
actual means.  

To better assess the relative ability of different methods to recover the mean recurrence 
intervals from a small sample, 100 analyses were performed using Monte Carlo methods and 
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maximum likelihood. The average California paleoseismic site on which Monte Carlo analysis 
could be performed had 5 events and an apparent mean recurrence interval of 341 yr. The total 
average dating uncertainty was about 50% of the recurrence interval. Thus 100 random series 
were pulled from an exponential distribution with a 341-yr mean and ±75-yr time windows were 
generated around each event. For 5 events, maximum likelihood is the same as the sample mean 
(observation period divided by the number of events). Results of the simulations are shown in 
Figure 6.  

 

 
Figure 6. Results of 100 Monte Carlo analyses on 5-event synthetic earthquake series 
drawn from a known distribution. Histograms show differences between calculated and the 
correct recurrence value. The asymmetric exponential distribution causes a sampling bias 
for short series such that the arithmetic mean of the samples is systematically less than the 
underlying distribution, approaching the distribution median   of 0.63/λ (bottom panel). 
Monte Carlo techniques are subject to considerable uncertainty (upper panels), but tend to 
distribute more symmetrically about the mean.   
 
Sample means tended to underestimate recurrence intervals by an average of 97 yr or 28% 

(see also Figure 3), clustering most closely to the median of the parent distribution 
(0.63/λ=215 yr).  In the limiting case of a single interval, sample means would cluster exactly at 
the median because there is a 50% chance of landing on either side of it. With increasing sample 
size (>25, Figure 3), sample means begin to reflect the mean of the parent distribution. While 
any given sample mean could be the same as the underlying distribution, odds are that sample 
means from a collection of paleoseismic sites with 5-10 events each (as is the case in California) 
will yield a result closer to the underlying medians. The result being a possible overestimate of 
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the hazard if earthquakes recur according to an asymmetric PDF with medians less than means 
(e.g., exponential, lognormal, Brownian Passage Time). 

 Means of Monte Carlo simulations overestimated mean recurrence by an average 20 yr or 
6%, while use of the median values underestimated recurrence intervals by 27 yr or 8%. The 
mode of Monte Carlo analyses tended to underestimate recurrence intervals more, by an average 
70 yr (21%); thus use of the median or mean of the simulations appears to be the best choice.  If, 
as is usually assumed [e.g., WGCEP, 2003], earthquake recurrence is distributed asymmetrically, 
then it would appear that Monte Carlo sampling may be a useful technique for analysis of (<5-10 
events) short paleoseismic series.   

As would be expected, there is an apparent relationship between the number of observed 
earthquakes in a paleoseismic series and confidence in determining mean recurrence interval. In 
Figure 7, the number of events in each series is plotted against a normalized expression of the 
confidence, where means are divided by 95% confidence intervals. Thus larger values imply 
better-constrained recurrence intervals. A standard-error calculation on expected resolution is 
shown for comparison. 

 

 

Figure 7. Number of paleoearthquakes at different California sites plotted against 
normalized expression of confidence on mean recurrence interval (mode divided by 95% 
confidence interval). Dashed line represents inverse standard error.  
 
To summarize, exponential distribution means were calculated for 19 California paleoseismic 

sites using a Monte Carlo method in which all reasonable exponential distributions were 
considered. Relative success rates of different recurrence distribution parameters from the Monte 
Carlo analysis were used to estimate most-likely interevent times at each site. A test using 
synthetic paleoseismic series tended to show recovery of the parent distribution mean within 
about 5-10% of the actual value. The full array of exponential PDF’s (e.g., Figure 5) can be 
retained for use in probability calculations as a way of accounting for uncertainty.  
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3. Monte Carlo determination of time-dependent recurrence 
parameters  

Time-dependent probability calculations can be fit to mimic the renewal hypothesis of 
earthquake regeneration such that earthquake likelihood on a fault is lowest just after the last 
event. As tectonic stress grows, the odds of another earthquake increase. A time-dependent 
probability calculation sums a PDF f(t) as 

 

P(t ≤ T ≤ t + Δt) = f (t)dt
t

t +Δt∫            (3) 

 
where f(t) can be any distribution, such as lognormal [e.g., Nishenko and Buland, 1987], Weibull 
[Hagiwara, 1974], or Brownian Passage Time (inverse Gaussian) [Kagan and Knopoff, 1987; 
Matthews et al., 2002]. These functions distribute interevent time or its proxy (μ), and the width 
of the distributions represents inherent variability (coefficient of variation α) on recurrence. For 
example, in the case of common practice where α is limited to between 0 and 1, a very narrow 
distribution implies very regular recurrence.  

Two commonly applied probability density functions, the lognormal  
 

 f (t,μ,α) =
1

tα 2π
exp

− ln t − μ( )2

2α 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟                        (4) 

and Brownian Passage Time (inverse Gaussian, Equation 2), have characteristics that 
qualitatively simulate earthquake renewal when α is limited to be between 0 and 1. The 
distributions are asymmetric (Figure 1), with less weight at very short recurrence times which, 
when integrated, translates to very low probability early in the earthquake cycle. They are 
defined by two parameters, mean interevent time (μ), and a coefficient of variation (α) that 
govern their shape. The distributions differ in their asymptotic behavior; integration of the 
lognormal distribution to very long times asymptotes to zero, whereas the Brownian Passage 
Time distribution asymptotes to a fixed value, behavior that Matthews at al. [2002] say favors 
the Brownian distribution for hazard calculations.  

3.1 Recurrence interval and coefficient of variation  
The strategy for Monte Carlo determination of time-dependent recurrence parameters is 

much the same as described for exponential frequencies in Section 2, except the analysis must be 
expanded to consider a range of coefficient of variation. Thus distributions with means covering 
the reasonable range of possible recurrence values (10 yr to 10 times the sample mean) are 
constructed across coefficient of variation values between 0.01 and 1.0. For each PDF described 
by a paring of coefficient of variation and mean recurrence, event interval sets are drawn at 
random and assembled into earthquake sequences 5 million times. Those that match observed 
event windows (range of possible event times as constrained by radio carbon dating assuming a 
uniform distribution), are tallied. Open intervals and the interval before the first catalog event are 
treated in the same way as described for the exponential distribution example in Section 2.  
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Undertaking dual-parameter estimation from sparse paleoseismic data is a difficult problem, 
and one that generally produces a poorly resolved result. The goal with the Monte Carlo 
approach is to provide a quantitative basis for limiting parameters, and for assessing most-likely 
pairings, because time-dependent probability calculations demand these values. Thus at the very 
least, the results can be used to test the consistency of a chosen time-dependent model with the 
range of paleoseismic constraints.    

As an example, the paleoseismic catalog from the south Hayward site of Table 1 is analyzed. 
By repeatedly sampling a full range of time-dependent PDF’s, the most likely combinations 
emerge (Figure 8). In this example, Brownian Passage Time distributions [e.g., Matthews at al., 
2002] are used. The contour plot of Figure 8 shows the range of possible PDF’s that can 
reproduce the paleoseismic sequence on the south Hayward fault. From model results it is 
possible to conduct a variety of statistical analyses to aid in selecting appropriate parameters for 
use probability calculations. The mean of coefficient of variation-recurrence interval 
combinations yielding PDF’s that match observed records most frequently can be taken as most 
likely following the results of analysis shown in Figure 6. Additionally, the number of matches 
to observed for a given combination can be divided by the total number of matches, and a 
relative likelihood expressed as a fraction of the most-frequently successful combination 
(Table 3).  

In Table 3 and Figure 8, results from the south Hayward fault analysis are given with the 
most likely parameters expressed as a function of coefficient of variation. In that example, a 
coefficient of variation of 0.2 is favored, similar to the value calculated by Sykes and Menke 
[2006]. The mean of that PDF is 172 yr, and the 95% confidence interval ranges from 140 to 190 
yr; confidence intervals were found by counting the hits. Should these parameters be used in 
time-dependent probability calculations, the relative likelihood of each parameter set could be 
used to weight the solutions. For example, a coefficient of variation of 0.2 is ~8 times more 
likely than a value of 0.5 according to the Monte Carlo analysis (Table 3). More examples from a 
variety of paleoseismic sites are discussed and tabulated in Section 4. 
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Figure 8. Analysis results for time-dependent parameters for  Brownian Passage Time 
distributions at a site on the south Hayward fault [Lienkaemper et al., 2003]. The number 
of matches to the observed paleoseismic sequence are contoured vs. recurrence interval and 
coefficient of variation. The dashed line illustrates dependence between recurrence interval 
and coefficient of variation. 
 

 
Prob COV Mode Median Mean 2.5% 98.5% 16.5% 83.5%

0.0002 0.99 200 153 194 80 340 120 240
0.0004 0.9 190 135 188 80 300 120 230
0.0008 0.8 170 142 184 90 270 130 220
0.0017 0.7 160 148 181 100 260 130 210
0.0039 0.6 170 156 177 100 240 130 200
0.0087 0.5 160 134 173 110 230 130 190
0.0208 0.4 170 137 172 120 210 140 180
0.0420 0.3 170 138 171 130 200 140 180
0.0657 0.2 170 135 172 140 190 150 170
0.0235 0.1 190 143 184 160 190 150 180

 
Table 3. Probability of coefficient of variation-recurrence interval combinations defining 
recurrence PDF’s from Monte Carlo modeling of the Tule Pond site on the Hayward fault. 
The most likely mode, median, and mean of the recurrence distributions are given for a 
range of coefficient of variation values. In addition, 95% and 67% confidence bounds on 
recurrence intervals are given.  
 

15 



   

In some cases there can be dependence between the coefficient of variation and recurrence 
interval. That is, for a given recurrence interval, the most likely range of coefficient of variation 
differs from that of a different interval. An example of this behavior is shown in Figure 9, where 
data from a trench on the Elsinore fault at Glen Ivy [T. Rockwell, unpublished data] were 
analyzed. This issue varies in importance depending on the site investigated (e.g., no slope is 
apparent on Figure 8). Thus model results could be used to identify the most likely combinations 
on a segment-by-segment basis. Such an analysis for a multi-fault probability forecast reduces 
the possibility of giving non-zero weight to mutually exclusive recurrence models [Page and 
Carlson, 2006] as compared with applying a single range of coefficient of variation across an 
entire region.  

 

 

Figure 9. Analysis results for time-dependent parameters for  Brownian Passage Time 
distributions at a site on the Elsinore fault at Glen Ivy (Source: Working Group on California 
Earthquake Probabilities (WGCEP) paleosites database.) The number of matches to the observed 
paleoseismic sequence are contoured vs. recurrence interval and coefficient of variation. The 
dashed line illustrates dependence between recurrence interval and coefficient of variation. 
 

Calculation results yield distributions of coefficient of variation-recurrence interval pairings, 
which in turn define distributions. Examination of Table 3 shows that recurrence parameter sets 
are not normally distributed since the mode, mean, and median all differ. Here the mean is taken 
as the preferred value based on tests shown in Figure 6. However, It is necessary to verify that 
the distributions are not multi-modal. For example, in Figure 10, a bimodal distribution is 
evident from analysis of the Whittier site on the Elsinore fault. The site has only 2 reported 
events that yield one closed and two open intervals, allowing for a broad array of possible PDF’s 
each with comparable likelihood of being correct (Table 4). However, the range of likelihood 
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does provide a mechanism for weighting parameters in a probability calculation which, given the 
similarity in weights, would reflect the breadth of the recurrence-parameter uncertainty. 

 

 

Figure 10. Analysis results for time-dependent parameters for Brownian Passage Time 
distributions at a site on the Elsinore fault at Whittier (Source: Working Group on 
California Earthquake Probabilities (WGCEP) paleosites database.) The number of 
matches to the observed paleoseismic sequence are contoured vs. recurrence interval and 
coefficient of variation. The plot shows a bimodal distribution of recurrence intervals with 
modes at about 1100 and 700 years.  
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Prob COV Mode Median Mean -95% 95% -67% 67%
0.0015 0.99 700 1000 1138.7 670 1950 860 1180
0.0014 0.9 700 1010 1150.5 680 1970 870 1200
0.0012 0.8 750 1030 1167.4 680 2010 890 1230
0.0011 0.7 820 1060 1193.7 690 2040 920 1250
0.0011 0.6 860 1100 1226 720 2080 950 1290
0.0012 0.5 1040 1130 1256.4 740 2080 1000 1310
0.0013 0.4 1180 1190 1286.1 740 2060 1070 1320
0.0011 0.3 1100 1190 1289.7 730 2050 1050 1360
0.0015 0.2 1160 1130 1222.7 720 2010 1010 1250
0.002 0.1 1150 1090 1150.9 700 1690 980 1200

 
Table 4. Probability of coefficient of variation-recurrence interval combinations defining 
recurrence PDF’s from Monte Carlo analysis from the Whittier site on the Elsinore fault. 
The analysis was constrained by only 2 intervals (one open), so the relative likelihoods of 
different combinations are not very different, demonstrating a poorly determined solution.  

4. Time dependent recurrence interval estimates from California 
paleoseismic sites 

In this section, the methods outlined in Section 3 are used to analyze a variety of California 
paleoseismic sites and most-likely values for mean recurrence interval and coefficient of 
variation are reported. Parameters derived from Monte Carlo analysis are compared with values 
taken directly from paleoseismic series.  

Data from trenches across 19 California strike-slip fault segments were analyzed using 
Monte Carlo methods. These are the same sites for which exponential parameters were 
developed in Section 2. A range of coefficient of variation values was used from 0.01 to 0.99 in 
0.1 increments, and recurrence intervals from 10 yr to 10 times the sample means were attempted 
at 10-yr intervals. Each combination was tried 5 million times, resulting in a total of ~1.65 ⋅1010 
randomly-drawn earthquake series per site that were compared with observed sequences, which 
represents a maximum reasonable compute time for desktop computers. As in the time-
independent calculations, the lengthiest series and ones with most tightly-constrained ages were 
not reproduced with any combination. Thus, unless higher-powered computer resources are used, 
the method is best applied to sparse paleoseismic sequences.  

Just as recurrence intervals determined from Monte Carlo analysis using exponential 
functions could be slightly higher than sample arithmetic means depending on whether the 
modes, means, or medians of the Monte Carlo results were used, so too were those calculated 
using Brownian Passage Time (BPT) distributions. These effects can be shown graphically by 
plotting modeled recurrence intervals against the means of observed intervals (Figure 11).
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Site Lat Lon COV Mode Median Mean RI Pref.
Calaveras fault - North 37.5104 -121.8346 0.2 440 430 445 484
Elsinore - Glen Ivy 33.7701 -117.4909 0.8 270 270 291 174
Elsinore Fault - Julian 33.2071 -116.7273 0.5 900 1060 1193 N/A
Elsinore - Temecula 33.4100 -117.0400 0.8 680 700 741 500
Elsinore - Whittier 33.9303 -117.8437 0.5 1040 1130 1256 N/A
Garlock - Central 35.4441 -117.6815 0.6 740 720 729 1276
Garlock - Western 34.9868 -118.5080 0.7 640 680 711 1159
Hayward fault - North 37.9306 -122.2977 0.7 330 350 363 401
Hayward fault - South 37.5563 -121.9739 0.2 170 160 172 150
N. San Andreas - North Coast 38.0320 -122.7891 N/A N/A N/A N/A 248
SAF - Arano Flat 36.9415 -121.6729 0.4 110 100 115 106
N. San Andreas -  Fort Ross 38.5200 -123.2400 0.2 360 350 360 288
San Gregorio - North 37.5207 -122.5135 0.2 440 450 480 N/A
San Jacinto - Hog Lake 33.6153 -116.7091 N/A N/A N/A N/A 250
San Jacinto - Superstition 32.9975 -115.9436 0.8 310 360 402 325

South San Andreas sites Lat Lon COV Mode Median Mean RI Pref.
San Andreas - Burro Flats           

 

 

Table 5. Model results from analysis at 19 paleoseismic sites in California using a Brownian Passage Time PDF. Most-frequent 
combinations of coefficient of variation and recurrence values that reproduced observed event sequences are reported for each site. 
Also given are mean recurrence intervals calculated by dividing the total time by the number of intervals (same as in Table 2). 
Event ages calculated by T. Dawson [WGCEP paleosites database], except the southern San Andreas sites, which were calculated 
by Biasi et al. [2002].  

2.5% 97.5% 16.5% 83.5% T min T max Events RI Min RI Max
320 610 370 500 1861 2381 5 372 595
240 350 260 280 794 947 6 159 189
740 2400 870 1460 N/A N/A 2 N/A N/A
560 1090 630 820 1200 1800 4 400 600
690 2610 880 1570 N/A N/A 2 N/A N/A
650 760 670 740 6120 6640 6 1224 1328
550 990 610 790 3920 5350 5 980 1338
270 480 310 400 1830 2166 5 261 542
140 190 150 170 1318 1678 11 132 168
N/A N/A N/A N/A 2566 2896 12 233 263
70 140 90 120 796 896 9 100 112
270 530 330 390 956 1351 5 239 338
320 770 370 560 N/A N/A 2 N/A N/A
N/A N/A N/A N/A 3500 4000 16 233 267
230 640 280 520 476 823 3 238 412

2.5% 97.5% 16.5% 83.5% Events RI Min RI Max
 33.9730 -116.8170 0.7 220 220 234 176

SAF - Combined Carrizo Plain     35.1540 -119.7000 0.6 210 220 244 235
San Andreas - Indio  33.7414 -116.1870 0.7 280 320 358 246
San Andreas - Pallett Creek 34.4556 -117.8870 N/A N/A N/A N/A 136
San Andreas - Pitman Can

190 340 210 220 7 85 559
160 380 180 280 6 108 640
230 590 270 420 4 96 904
N/A N/A N/A N/A 10 74 283

 on     y 34.2544 -117.4340 0.9 240 240 261 154
San Andreas - Plunge Creek   34.1158 -117.1370 0.7 310 330 361 169
Mission Creek - 1000 Palms 33.8200 -116.3010 0.6 250 280 303 236
San Andreas - Wrightwood        34.3697 -117.6680 N/A N/A N/A N/A 98

Modeled Parameters

200 370 210 290 7 75 382
290 600 310 450 3 58 820
200 450 240 340 5 102 728
N/A N/A N/A N/A 15 60 175

0598-2006
1020-2006

0533-2006

0645-2006
0931-2006
1499-2006
0824-2006

Time
0774-2006

Time/Intervals Method
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The Monte Carlo method described in this paper identifies most-likely PDF’s that reproduce 
a paleoseismic sequence. For time-dependent analysis, Brownian Passage Time functions were 
used, which have long tails (Figure 1). A long-tailed distribution implies that there are low-
probability long-interval events expected. The majority of California paleoseismic sites have 
sequences of fewer than 10 events identified. Thus if earthquakes are actually distributed like a 
Brownian Passage Time (or lognormal) distribution, infrequent long-interval events are unlikely 
to be in the record. So, when models impose long-tailed shapes to observed intervals, there is an 
assumption that long-interval recurrence times will happen in the future. Thus the means of best-
fit long-tailed PDF’s are expected to be higher than the arithmetic mean of intervals (Figure 11). 
An exception to that outcome is the Garlock fault, where there are some long intervals in the 
record (Figure 12). In that instance, Monte Carlo modeling fits the mean recurrence interval at 
μ=729 yr as compared to the arithmetic mean of μ=1276 yr (Table 5; Figure 12). 

Calculations performed here enable an assessment of most-likely values of earthquake 
coefficient of variation across California. Values range from α=0.2 to α =0.9 (Table 5), implying 
that choosing a single value for the entire state in probabilistic forecasts might not be the best 
practice. There appears to be some consistency among fault zones with multiple sites; the four 
Elsinore fault sites show relatively high coefficient of variation values of α =0.5 to α =0.8, and 
the two Garlock fault sites are similar at α =0.6 and α =0.7. On the southern San Andreas fault, 
nearby sites tend to be somewhat consistent: Plunge Creek and Pitman Canyon both have α=0.7-
0.9 modeled coefficient of variation, and the Indio and Thousand Palms Oasis sites have values 
of α=0.6 to 0.7. A counter example is the Hayward fault, with its 2 sites having coefficient of 
variation values of α =0.2 and α =0.7.  

 

Figure 11. Plot of modeled recurrence-interval means against (a) exponential, and (b) 
Brownian Passage Time distribution parameters derived directly from observed intervals. 
The dashed black lines have a slope of 1.0; thus points falling on it would imply both 
methods yield the same result. The means, medians, and modes of Monte Carlo fits to 
parameters from Tables 2 and Table 5 are shown by green, red and blue dots respectively.    

 



   

 

Figure 12: Observed preferred earthquake intervals on the central Garlock fault [Dawson 
et al., 2003; C. H. Madden, unpublished data, 2006] shown in pale blue; the arithmetic 
mean of the intervals is ~1276 yrs. The green and dark blue curves are BPT distributions 
with 1276-yr and 729-year means respectively The light blue curve is an exponential 
distribution corresponding to a 1200-yr mean. In this instance Monte Carlo modeling finds 
that BPT distributions with lower means than the arithmetic mean can accommodate the 
long-intervals in the record because of the distribution asymmetry.  
 

As in coefficient of variation, there is a degree of consistency in modeled recurrence interval 
among faults (Table 5). Three of 4 Elsinore sites are calculated to have recurrence estimates that 
range from μ=741 to μ=1256 years. The Glen Ivy site shows a higher frequency of μ=291 years. 
The two Garlock-fault sites are calculated to have consistent recurrence intervals of μ=711 and 
μ=729 years. Of the southern San Andreas fault sites that could be fit with a Monte Carlo 
technique there is consistency in modeled recurrence intervals, with values ranging between 
μ=234 and μ=303 years. However, the southern San Andreas locations not analyzed here, the 
Wrightwood and Pallet Creek sites, have yielded significantly shorter intervals (μ=105 and 
μ=135 years respectively) as calculated by Biasi et al. [2002]. There is a discrepancy in northern 
San Andreas earthquake recurrence between the Arano Flat site near Watsonville that shows a 
relatively short recurrence interval of μ=110 years as compared with the Ft. Ross site north of the 
San Francisco Bay area that has a 350-year interval.  

5.  Most-likely-rate and 1-sigma approximation calculated from 
recurrence interval models 

The linear inversion described in Appendix G was informed using rates from the ‘rate' 
column in Table 6. Uncertainty bounds are meant to approximate 1 standard deviation (1-σ) on 
rates for potential use in a weighted inversion. Distributions of recurrence intervals were 
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calculated with three methods, and in most cases were highly asymmetric. I thus had to 
approximate 1-σ variability by trying to capture a measure of the width of recurrence-interval 
distributions . Below, methods used are described in detail.  

Most-likely rates were calculated in three ways: (1) for sites on the south San Andreas fault, 
rates were calculated from the reciprocal of the preferred values reported at sites by Biasi et al. 
([2002], manuscript to be submitted to Bulletin of the Seismological Society of America, and 
Appendix E of this report). Because of the correlation methods used by Biasi et al., and the 
relatively large number of events on the south San Andreas fault, these values were deemed 
better constrained than values that would result from forward modeling with Monte Carlo 
methods. The Biasi et al. approach used time-intervals to calculate Poisson-model means, but 
used exponential distributions to calculate uncertainties. (2) For most other sites, the forward-
modeling method outlined in this appendix (C) was used to find the mode (most frequent value) 
from fitting exponential distributions (Table 2). (3) For long sequences where the forward-
modeling approach did not converge to a solution (north-coast San Andreas fault: Vendanta site, 
San Jacinto fault: Hog Lake site) the rate and uncertainty were taken from the preferred and 
min/max rates calculated by Tim Dawson (Appendix B).  

In Table 6, the column labeled ‘sigma’ is an estimated standard deviation, and should only be 
thought of in the context of the weighted linear inversion where a symmetrical approximation of 
1-σ ranges was desired. These values are not reflective of confidence bounds as given in Tables 
2 and 5. The method used to approximate a symmetric 1-σ range was to follow 
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Since the linear least-squares inversion expects normally-distributed errors, this 1-σ range was 
then treated as if the rate was at the center of a normal recurrence-interval distribution. Since the 
rates came from three sources, and uncertainty was treated differently by different investigators, 
some modifications were made through discussions between Weldon and Parsons as to what 
values should be used for RImin and RImax (minimum and maximum recurrence intervals) to make 
1-σ estimates comparable for paleoseismic series of comparable quality and length. The Dawson 
method produced 1-σ minimum and maximum rates; the Biasi et al. [2002] methodology 
(Appendix E) produced 95% confidence thresholds for minimum and maximum rates (Appendix 
B). To make comparable estimates of the 1-σ ranges, the factor of ½ in the above equation was 
replaced with a factor of ¼, under the assumption that 95% confidence is approximately 2σ. For 
the forward-modeled values, the 95% confidence bounds reported in Table 5 were used, but the 
span was multiplied by ½ because 67% confidence intervals tended to be very narrow in the 
asymmetric distributions (Table 2). 
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Site Lat Lon Poisson rate Est. symmetric σ 16.5% 83.5% 2.5% 97.5%
Calaveras fault - North 37.5104 -121.8346 0.001252 0.001955 0.000862 0.002703 0.000439 0.004348
Elsinore - Glen Ivy 33.7701 -117.4909 0.004310 0.005444 0.003226 0.008333 0.001613 0.012500
Elsinore Fault - Julian 33.2071 -116.7273 0.000539 0.001141 0.000325 0.001316 0.000219 0.002500
Elsinore - Temecula 33.4100 -117.0400 0.000543 0.000972 0.000357 0.001136 0.000230 0.002174
Elsinore - Whittier 33.9303 -117.8437 0.000519 0.001111 0.000313 0.001266 0.000217 0.002439
Garlock - Central 35.4441 -117.6815 0.000624 0.000830 0.000455 0.001190 0.000262 0.001923
Garlock - Western 34.9868 -118.5080 0.000619 0.000868 0.000422 0.001205 0.000264 0.002000
Hayward fault - North 37.9306 -122.2977 0.002915 0.002905 0.002174 0.005000 0.001333 0.007143
Hayward fault - South 37.5563 -121.9739 0.005291 0.004085 0.004348 0.008333 0.002941 0.011111
N. San Andreas - Vendanta 38.0320 -122.7891 0.004237 0.002400 N/A N/A 0.002193 0.007407
SAF - Arano Flat 36.9415 -121.6729 0.007092 0.006481 0.005556 0.012500 0.003704 0.016667
N. San Andreas -  Fort Ross 38.5200 -123.2400 0.002193 0.003462 0.001493 0.005000 0.000769 0.007692
San Gregorio - North 37.5207 -122.5135 0.000754 0.002153 0.000442 0.002273 0.000240 0.004545
San Jacinto - Hog Lake 33.6153 -116.7091 0.004149 0.002316 N/A N/A 0.002273 0.006993
San Jacinto - Superstition 32.9975 -115.9436 0.001812 0.004288 0.001205 0.005000 0.000515 0.009091

Site Lat Lon Poisson rate Est. symmetric σ 16.5% 83.5% 2.5% 97.5%
San Andreas - Burro Flats              33.9730 -116.8170 0.002381 0.002494 0.003125 0.007692 0.002174 0.011111
SAF - Combined Carrizo Plain     35.1540 -119.7000 0.003571 0.001924 0.002128 0.005556 0.001235 0.008333
San Andrteas - Indio  33.7414 -116.1870 0.003125 0.002328 0.001818 0.007143 0.000855 0.011111
San Andreas - Pallett Creek 34.4556 -117.8870 0.007353 0.002495 N/A N/A 0.003534 0.013514
San Andreas - Pitman Canyon      34.2544 -117.4340 0.004545 0.002679 0.004000 0.009091 0.002273 0.012500
San Andreas - Plunge Creek   34.1158 -117.1370 0.002083 0.004005 0.002083 0.008333 0.000676 0.012500
Mission Creek - 1000 Palms 33.8200 -116.3010 0.002941 0.002108 0.002000 0.006667 0.001075 0.010000
San Andreas - Wrightwood        34.3697 -117.6680 0.010204 0.005476 N/A N/A 0.005714 0.016667

 

Table 7. Earthquake rates and confidence intervals developed from Tables 2, 6, and 7. 
These rates are used to check independent earthquake rate modes for consistency with 
paleoseismic data.  

 

An additional table (Table 7) is provided here that is used for assessing whether earthquake 
rates determined from slip-rate-constrained solutions are consistent within 95% confidence 
intervals with paleoseismic rates. Thus the numbers in Table 7 are not used to constrain a 
weighted inversion, but are instead used as guidelines to ensure that important data are not 
violated.  

6. Aperiodicity determination for time-dependent probability 
calculations for Working Group on California Earthquake Probabilities 

This section describes methods for suggested segment aperiodicity values from analysis of 
paleoseismic data. Description is limited to interpretation of Monte Carlo analysis results 
discussed in previous sections. Output from Monte Carlo analysis generated 3-D distributions of 
likelihood vs. recurrence interval vs. aperiodicity (Figures 8-10). From distributions like those 
depicted in Figures 8-10, each aperiodicity-recurrence interval pairing has a relative weight. 
Ideally, probability calculations could be made for every pair and given an appropriate weight. 
However, given the number of other logic tree branches under consideration, such an exercise is 
untenable. Therefore for each of 20 sites that could be analyzed (Figure 13) using the Monte 
Carlo method, a most-likely aperiodicity value was chosen, as well as 67% and 95% confidence 
intervals (Table 8).  

As described in Section 3, there is some functional dependence between aperiodicity and 
recurrence interval that may need to be considered. Dependence amongst parameters is varies 
from site to site, and can be assessed by examining Figure 14, which shows mean recurrence 
interval vs. aperiodicity.  
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Figure 13. Relative likelihood of aperiodicity for 20 California paleoseismic sites determined 
from Monte Carlo analysis.  
 

Site Lat Lon COV 2.5% 97.5% 16.5% 83.5%
Calaveras fault - North 37.5104 -121.8346 0.2 0.2 0.9 0.3 0.8
Elsinore - Glen Ivy 33.7701 -117.4909 0.8 0.7 1.0 0.8 1.0
Elsinore Fault - Julian 33.2071 -116.7273 0.5 0.0 1.0 0.2 0.8
Elsinore - Temecula 33.4100 -117.0400 0.8 0.5 1.0 0.7 1.0
Elsinore - Whittier 33.9303 -117.8437 0.5 0.0 1.0 0.2 0.9
Garlock - Central 35.4441 -117.6815 0.6 0.5 1.0 0.6 0.9
Garlock - Western 34.9868 -118.5080 0.7 0.3 1.0 0.5 0.9
Hayward fault - North 37.9306 -122.2977 0.7 0.4 1.0 0.6 1.0
Hayward fault - South 37.5563 -121.9739 0.2 0.0 0.6 0.0 0.5
N. San Andreas - North Coast 38.0320 -122.7891 N/A N/A N/A N/A N/A
SAF - Arano Flat 36.9415 -121.6729 0.4 0.3 0.9 0.4 0.8
N. San Andreas -  Fort Ross 38.5200 -123.2400 0.2 0.1 1.0 0.2 0.9
San Gregorio - North 37.5207 -122.5135 0.2 0.1 1.0 0.2 0.9
San Jacinto - Hog Lake 33.6153 -116.7091 N/A N/A N/A N/A N/A
San Jacinto - Superstition 32.9975 -115.9436 0.8 0.5 1.0 0.6 1.0
San Andreas - Burro Flats            33.9730 -116.8170 0.7 0.6 1.0 0.7 1.0
SAF - Combined Carrizo Plain     35.1540 -119.7000 0.6 0.4 1.0 0.6 1.0
San Andrteas - Indio  33.7414 -116.1870 0.7 0.5 1.0 0.7 0.8
San Andreas - Pallett Creek 34.4556 -117.8870 N/A N/A N/A N/A N/A
San Andreas - Pitman Canyon      34.2544 -117.4340 0.9 0.6 1.0 0.8 1.0
San Andreas - Plunge Creek   34.1158 -117.1370 0.7 0.4 1.0 0.6 1.0
Mission Creek - 1000 Palms 33.8200 -116.3010 0.6 0.4 1.0 0.6 1.0
San Andreas - Wrightwood        34.3697 -117.6680 N/A N/A N/A N/A N/A  
 
Table 8. Estimated aperiodicity values for California paleoseismic sites. The mean of all sites is 
0.6. However there is significant variation between sites at the 67% confidence level.  

25 



   

 

Figure 14. Mean recurrence interval vs. aperiodicity from analysis of 20 California paleoseismic 
sites. Variable dependence between the two parameters among different sites is evident.  

7. Conclusions 
A method for estimating most-likely recurrence parameters from short paleoseismic 

observations is explored. Sample means from short series that are expected to have asymmetric 
recurrence distributions will tend to reflect the distribution medians rather than the means, and 
could underestimate recurrence intervals (and thus overestimate hazard). Benchmarking tests on 
short, synthetic paleoearthquake catalogs indicate that the Monte Carlo methods can give results 
more reflective of the underlying distribution mean.  Monte Carlo draws from every reasonable 
recurrence PDF of an assumed class are tested for consistency with observed paleoearthquake 
series. Those models that can reproduce observations within dating uncertainties are tallied, and 
the mean of PDF’s that produce the most fits to observed is taken as most likely. Very long 
observed sequences with tight age constraints are difficult to reproduce with any specific PDF 
because of computational limitations; thus the proposed method is most useful in extracting 
recurrence information from short (•10 events) series, and/or sequences with poor age control. 
The method was applied to 19 paleoseismic sites across California using time-independent and 
time-dependent PDF’s. Relative weights were calculated for recurrence parameters from even 
the sparsest catalogs, which are proposed to be used for weighting logic-tree branches in 
earthquake probability calculations.  
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