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1 Introduction

This report covers two methods to determine failure probability and other related
quantities. The basic problem is as follows. Assume we are given a complex function
which depends on several variables. Each variable has its own distribution; all of which
are known. Given a certain threshold value for the function above which failure occurs,
what is the probability of failure? One way to accomplish this is to calculate the function
many times. By binning the function evaluations or trials, an estimate of the failure prob-
ability can be obtained. Enough trials must be done to achieve statistical convergence to
some tolerance or threshold; more on this below. 

One issue is how the values used in each trial are determined. In this report, two meth-
ods are explored, Monte Carlo sampling (MCS) and Latin hypercube sampling (LHS). 

In Monte Carlo sampling (MCS), a random number generator (RNG), is used to gener-
ate (pseudo-)random numbers as needed for the trials. Generally, for MCS, there are
three steps for each trial. First the random numbers must be generated. These random
numbers are usually uniformly distributed between 0 and 1, so they must be trans-
formed into the proper distribution for each variable. Finally, the values must be
plugged into the function to obtain the result. Very fast RNGs exist, so the first step can
be very fast. The computation times for the second and third steps depend on the com-
plexity of the distributions and the function.

MCS is a subset of the more general field of Monte Carlo simulation. In MCS, each trial
is a specific function and the same number of random variables are required for each
trial. In general Monte Carlo simulation, each trial can simulate a process too compli-
cated to model deterministically. The number of random numbers required for each trial
can also vary. An example of this is the simulation of emission and absorption of pho-
tons of heat or light taking into account reflection and scattering.

Due to the large number of samples typically required, Monte Carlo sampling is often
time consuming. There have been several efforts to reduce the number of samples
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required. One popular method is Latin Hypercube sampling (LHS). It is defined as
[Iman and Shortencarier, 1984]:

“LHS selects n different values from each of k variables X1, ..., Xk in the fol-
lowing manner. The range of each variable is divided into n nonoverlap-
ping intervals on the basis of equal probability. One value from each
interval is selected at random with respect to the probability density in the
interval. The n values thus obtained for X1 are paired in a random manner
(equally likely combinations) with the n values of X2. These n pairs are
combined in a random manner with the n values of X3 to form n triplets,
and so on, until n k-tuplets are formed. This is the Latin hypercube sample.
It is convenient to think of the LHS, or a random sample of size n, as form-
ing an n x k matrix of input where the ith row contains specific values of
each of the k input variables to be used on the ith run of the computer
model.”

The purpose of this report is two-fold. The work of Maltby [Maltby, 1990] has been
used to make estimates in the uncertainty of Monte Carlo simulation results. This report
will apply Maltby’s work to obtain a formulation for an error estimate for MCS results
and checks the validity of applying these error estimates to MCS and LHS results. The
second objective of this report is to determine the relative benefits of MCS and LHS for
obtaining failure probability estimates.

2 Error Estimates for MCS

This section applies statistical theory to obtain error estimates for MCS results. The
first section covers Bernoulli random variables [Ross, 1988]. For the type of failure prob-
ability calculation covered in this report, all MCS results are Bernoulli random variables.
The next section covers the central limit theorem and uses it to derive the MCS error esti-
mate. 

2.1    Bernoulli Random Variables

A Bernoulli random variable is defined as [Ross, 1988]:

“Suppose that a trial, or experiment, whose outcome can be classified as
either a “success” or a “failure” is performed. If we let X = 1 when the out-
come is a success and X = 0 when it is a failure, then the probability mass
function is given by 

p(0) = P{X = 0} = 1 - p (1)

p(1) = P{X = 1} = p, (2)

where p, 0 ≤ p ≤ 1, is the probability that the trial is a “success.” 
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A random variable X is said to be a Bernoulli random variable (after the
Swiss mathematician James Bernoulli) if its probability mass function is
given by  eqns. (1) and (2) for some p ∈ (0,1).” 

As can be seen from the definition above, each MCS trial can be considered a Bernoulli
random trial, but X = 1 if the experiment fails, not if it succeeds. Looking at the MCS tri-
als this way is useful because it allows failure statistics to be obtained without requiring
knowledge of the distributions of the variables on which the function depends. There-
fore, Bernoulli statistics are applicable no matter how many variables the function
depends on or what their distributions are. In fact, Bernoulli statistics have been applied
to the simulation of the absorption of heat and light where reflections and scattering
make the number of random numbers required per trial variable [Maltby, 1990; Zeeb et
al., 1999; Zeeb and Romero, 1999].

For Bernoulli statistics to apply to a Monte Carlo simulation, the end result of the trial
must be total success or total failure. Partial success such as partial absorption of a pho-
ton is not a Bernoulli process. 

For a Bernoulli random variable, the mean, µ, and the variance, σ2, are defined as:

(3)

, (4)

where E is the expected value. 

The failure probability estimate obtained by MCS is equal to µ which is in turn equal
to p. Since it is a failure probability, it will also be referred to as F.

2.2    The Central Limit Theorem and MCS Error Estimates

The central limit theorem [Ross, 1988] states that if there are N independent and iden-
tically distributed random variables, X1, ..., XN, each having mean µ and variance σ2,
then: 

, (5)

where H is defined as:

, (6)

and Φ(z) is the cumulative distribution function for the standard normal distribution
(that is, a normal distribution with µ = 0 and σ2 = 1):

µ E X[ ] p= =

σ2
E X µ–( )2[ ] p 1 µ–( )2

1 p–( ) 0 µ–( )2
+ p 1 p–( )= = =

P H z≤{ } Φ z( )→ as n ∞→

H
X1 ... XN Nµ–+ +

σ N
---------------------------------------------=
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In other words, H tends toward the standard normal distribution as N goes to ∞. The
central limit theorem was first applied to Bernoulli random variables [Ross, 1988], but as
mentioned above, it can be applied to random variables from any distribution. 

If we define µ* as the estimate of the actual mean from the N random variables:

, (8)

then for N large enough, using  eqns. (6) and (8),  eqn. (5) can be rewritten as:

. (9)

η is the confidence half-envelope value and D(z) is the probability that the predicted
value of the mean is within plus or minus η of the actual mean. Various sources tabulate
z as a function of Φ and/or D [Kreyszig, 1993; Ross, 1988]. Using these tabulated values,
it is possible to determine an envelope around the mean for which the probability, or
confidence, of µ* being inside the envelope is D(z). 

Examples of such confidence envelopes are given in Figs. 1 to 4 where sample prob-
lems are done using the two benchmark problems described in the next section for a
given threshold. In Figs. 1 and 3, the µ* values calculated in five different MCS runs are
plotted along with the 95% and 99% confidence envelopes. The confidence envelope is
calculated using  eqn. (9) with N equal to the number of samples. From the tables, z is
1.960 for 95% confidence and 2.576 for 99% confidence. µ, called the “exact” answer here
(and σ which is calculated from it) are assumed to be the average value of the final
results of the five runs. µ* is expected to be outside the 95% confidence interval 5% of the
time. Of course the actual number of times µ* is outside the 95% envelope varies from
series of trials to series of trials. µ* can be seen outside the 95% envelope several times in
Fig. 3, but it does not go outside that envelope in any part of Fig. 1 that is visible to the
eye.

Figs. 2 and 4 display the “exact” answer, the results of one run, and the 95% and 99%
confidence envelopes. These confidence envelopes are determined from the current
value of µ* not from the “exact” answer. While they waver quite a bit for small numbers
of samples, they converge to the “exact” confidence envelope as N increases. 

Using  eqns. (3), (4), and (9), it is possible to define η in terms of the F, the failure prob-
ability. It should be remembered F is just the µ value for the MCS trials.

Φ z( ) 1

2π
---------- x–

2

2
-------- 

 exp xd

∞–

z

∫=

µ* X1 ... XN+ +

N
-------------------------------=

P µ σ
N

--------z– µ* µ σ
N

--------z+≤ ≤
 
 
 

P µ η– µ* µ η+≤ ≤{ } Φ z( ) Φ z–( )–≅ D z( )= =
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Figure 1 Five MCS Failure Probability Estimate Curves for Problem 1, Threshold = 0.5
Confidence Envelope around the “Exact” Answer, µ = 0.449 (5X108 samples) 
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Figure 2 Single MCS Failure Probability Estimate Curve for Problem 1, Threshold = 0.5
Confidence Envelope around the MCS Result, µ* (µ = 0.449)
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Figure 3 Five MCS Failure Probability Estimate Curves for Problem 2, Threshold = 0.4
Confidence Envelope around the “Exact” Answer, µ = 0.0357 (5X109 samples)
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Figure 4 Single MCS Failure Probability Estimate for Problem 2, Threshold = 0.4
Confidence Envelope around the MCS Result, µ* (µ = 0.0357)
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. (10)

For Bernoulli random variables such as F, besides the confidence half-envelope value,
η, it is possible to specify δ, the percent half-envelope value:.

(11)

. (12)

δ is often referred to as the confidence interval [Zeeb et al., 1999].

η and δ can be used as convergence criteria for MCS problems. Before the run, the user
specifies a value for D (the percent confidence) and a maximum value for either η or δ.
Then at various points in the run, η or δ is calculated using F*, the estimated value of F.
Once the user defined value of η or δ is obtained, the results are considered converged
and computation stops. The second section below gives guidelines in determining how
many trials are required. It should be noted that once enough trials have been computed
to obtain a rough estimate of the answer, the difference between η or δ calculated by F*
and by F is negligible; this is easily seen in the graphs in the second section below this
one. 

3 Description of Benchmark Problems

In the tests performed below, two benchmark problems are used. Both are taken from
the earlier LHS testing done by Romero and Bankston [1998a, 1998b]. The first bench-
mark problem (problem 1) evaluates the function:

(13)

(14)

over the domain 0 ≤ p1, p2 ≤ 1. The second benchmark problem (problem 2) evaluates
the function:

(15)

over the domain 0 ≤ p1, p2 ≤ 1. For both functions, the variables p1 and p2 are both nor-
mally distributed with µ = 0.5, σ = 0.167. As mentioned in the problem descriptions
above, the truncation limits are 0 and 1. Since these truncation limits are equivalent to
±3σ, the effects of truncation are relatively small.

η σ
N

--------z z
F 1 F–( )

N
---------------------= =

P µ 1 δ–( ) µ* µ 1 δ+( )≤ ≤{ } D z( )=

δ η
µ
--- z

1 F–
NF

------------= =

responsep1 p2,( ) 1.5 1.3θ( ) 0.8r 0.35 2.4π r

2
------- 

 sin+sin=

r p1
2

p2
2

+= θ p2
p1
------ 

 atan=

responsep1 p2,( ) 1.5 2.25 p1
2

– p2
2

––=
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4 Verification of Error Estimate for MCS Results

To test the validity of the error estimates, MCS results were obtained for four threshold
values for each of two benchmark problems described in the previous section. The
thresholds were chosen by Romero and Bankston to test failure probability estimates at
several orders of magnitude. The results ranged from 0.98 to 2.6X10-4. The random num-
bers were generated using the random number generator RAN2 [Press et al., 1992]. The
random numbers were transformed to the proper normal distribution using the Box-
Muller method [Press et al., 1992]. If the value was outside of the range 0 to 1, it was
rejected and another value was generated to replace it. 

The results are shown below in Figs. 5 to 20. For each case, there are two different
graphs. As can be seen in Figs. 1 to 4, displaying the MCS results and the confidence
envelopes on a linear scale shows clearly that convergence is happening but fine detail is
absent. To better display the convergence, the pair of graphs shown below for each test
problem use log-log scales and show differences from the “exact” answer instead of the
actual values. To show the convergence of multiple runs, the first graph of each pair dis-
plays the absolute value of the difference of the “exact” answer and the results for five
different runs and the 95% and 99% percent confidence half-envelope values. The
“exact” answer is the average of the final results of the five runs and it is used to calcu-
late the confidence envelopes for this graph. The second graph in each pair displays the
difference between the results for one MCS run and the “exact” answer and the 95% and
99% confidence half-envelope values. In these graphs, the confidence half-envelope val-
ues are calculated from the running µ* and σ* values of the MCS simulation, rather from
the “exact” answer used in the first graph. In this second series of graphs, the curves rep-
resenting the confidence half-envelopes are always clipped at the beginning of the
graph. The reason for this is that if F or F* is 0 or 1, the confidence half-envelope value is
0. 

While basing the confidence envelope off the “exact” answer in the first series of
graphs allows the convergence for multiple runs to be seen, the second type of graph
shows the “real time” confidence envelope one would get from the results of an actual
run. Note that while the envelope does vary a bit at the beginning of the run, it becomes
insensitive to the changes as the run continues and converges close to the “exact”
answer envelope. The point where the envelope “stabilizes” varies. In the runs done for
this report, three types of behavior were found. In the cases where F was equal to
3.5X10-2 or less, the half-envelope value is close to its proper value by the time the num-
ber of samples equals to the inverse of F. By 100 times the inverse of F, the envelope has
stabilized in that an asymptotic value has been reached. To obtain meaningful results, at
least 100 times the inverse of the value being obtained must be used any way. For larger
values of F, the results differed a bit. For F around 0.45, the envelope stabilizes quickly
after about 10 samples. On the other hand, stabilization is a bit slow for F around 0.98,
up to 1,000 samples are required in these cases. 

For 108 samples, 41 points were computed per curve, while 45 points were computed
per curve for 109 samples. With this many points, it is expected that the results rise
8
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Figure 5 MCS Difference from “Exact” Answer for Problem 1, Threshold = 0.2
Confidence Half-Envelope Calculated from the “Exact” Answer (≅  0.9844) 
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Figure 6 Error in a MCS Result for Problem 1, Threshold = 0.2
Half-Envelope Calculated from the MCS Result (“Exact” Answer ≅  0.9844)
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Figure 7 MCS Difference from “Exact” Answer for Problem 1, Threshold = 0.5
Confidence Half-Envelope Calculated from the “Exact” Answer (≅  0.4489) 
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Figure 8 Error in a MCS Result for Problem 1, Threshold = 0.5
Half-Envelope Calculated from the MCS Result (“Exact” Answer ≅  0.4489)
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Figure 9 MCS Difference from “Exact” Answer for Problem 1, Threshold = 1.0
Confidence Half-Envelope Calculated from the “Exact” Answer (≅  7.650X10-3) 
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Figure 10 Error in a MCS Result for Problem 1, Threshold = 1.0
Half-Envelope Calculated from the MCS Result (“Exact” Answer ≅  7.650X10-3)
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Figure 11 MCS Difference from “Exact” Answer for Problem 1, Threshold = 1.5
Confidence Half-Envelope Calculated from the “Exact” Answer (≅  2.602X10-4) 
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Figure 12 Error for a MCS Result for Problem 1, Threshold = 1.5
Half-Envelope Calculated from the MCS Result (“Exact” Answer ≅  2.602X10-4)
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Figure 13 MCS Difference from “Exact” Answer for Problem 2, Threshold = 0.05
Confidence Half-Envelope Calculated from the “Exact” Answer (≅  0.9825)
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Figure 14 Error in a MCS Result for Problem 2, Threshold = 0.05
Half-Envelope Calculated from the MCS Result (“Exact” Answer ≅  0.9825)
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Figure 15 MCS Difference from “Exact” Answer for Problem 2, Threshold = 0.2
Confidence Half-Envelope Calculated from the “Exact” Answer (≅  0.4474) 
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Figure 16 Error in a MCS Result for Problem 2, Threshold = 0.2
Half-Envelope Calculated from the MCS Result (“Exact” Answer ≅  0.4474)
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Figure 17 MCS Difference from “Exact” Answer for Problem 2, Threshold = 0.4
Confidence Half-Envelope Calculated from the “Exact” Answer (≅  3.549X10-2) 
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Figure 18 Error for a MCS Result for Problem 2, Threshold = 0.4
Half-Envelope Calculated from the MCS Result (“Exact” Answer ≅  3.549X10-2)
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Figure 19 MCS Difference from “Exact” Answer for Problem 2, Threshold = 0.6
Confidence Half-Envelope Calculated from the “Exact” Answer (≅  1.216X10-3) 
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Figure 20 Error in a MCS Result for Problem 2, Threshold = 0.6
Half-Envelope Calculated from the MCS Result (“Exact” Answer ≅  1.216X10-3)
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above the 95% certainty point about twice per curve for all the graphs and that about
two points rise about the 99% certainty in the graphs showing the results for five runs.
This is indeed what generally happens. In 1,720 points shown in all eight graphs, it is
expected that a few extreme outlying points would be found such as the result around
100 samples in Fig. 11. On the other hand, some graphs have no points over 99% cer-
tainty and few over 95% certainty such as Fig. 7. All in all, the results seem to be quite
consistent with the confidence envelopes.

5 Application of MCS Error Estimates to LHS Results

In this section, graphs are presented to display how useful MCS error estimates are in
predicting the error in LHS results. To create these graphs, several runs were performed
with LHS sample sizes of 103, 104, 105, 106, and 107 samples. The LHS samples were
obtained using a copy of Iman and Shortencarier’s [1984] LHS program that was
obtained from Sandia National Laboratories [Romero, 1997]. A program was written to
process the LHS samples and obtain the failure probability estimates. The maximum
sample size was limited to 107 samples due to memory and disk space constraints that
will be described below. Due to the amount of CPU time involved, while 10 runs were
done for all the other sample sizes, only 5 runs were done with 107 samples.

The results are shown below in Figs. 21 to 36. In the graphs, each LHS result represents
the result of an entire LHS sample of the size specified on the x axis. Again, there are two
different graphs for each case. In the first type of graph, the “exact” answer is obtained
from the average of the five 107 sample LHS runs and is used to calculate the 95% and
99% confidence half-envelope values plotted on the graph. The differences between the
“exact” answer and the results of the individual LHS runs are also plotted. The second
graph is actually an overlay of the LHS results onto the five run MCS graphs shown pre-
viously. In this case, the convergence envelope is calculated from the average of the MCS
results. While the second graph allows one to compare the convergence behavior of LHS
and MCS results, the first graph gives a more detailed, less cluttered presentation of the
LHS results over a smaller range.

In the graphs, Figs. 21 to 36, the confidence half-envelope values are obtained using
the MCS formula, eqn. (10). Since, for a given number of samples, the LHS method is
purported to give more accurate results than the MCS method, it is clear that these half-
envelopes should be too large. The actual purpose of these graphs is twofold. First it ver-
ifies that the MCS and LHS methods converge to the same results. Second, it allows the
convergence of the MCS and LHS results to be compared. 

The LHS method does seem to converge slightly better than the MCS method for the
same number of samples. For the eight cases combined, there are 450 separate results. If
the LHS method converges like the MCS method, it is expected that about 4 or 5 results
will be above 99% confidence and 22 or 23 points will be above 95% confidence. Com-
pared to the confidence envelope values obtained from the LHS results, it is found that
no points are above 99% confidence, although one is close. Furthermore, only 5 points
are above 95% confidence. Still when comparing the LHS and MCS results, there does
17



Figure 21 LHS Errors for Problem 1, Threshold = 0.2
Bernoulli Half-Envelope Calculated from the LHS “Exact” Answer (≅  0.9844)
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Figure 22 Comparison of MCS Errors to LHS Errors for Problem 1, Threshold = 0.2
Confidence Half-Envelope Calculated from the MCS “Exact” Answer (≅  0.9844) 
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Figure 23 LHS Errors for Problem 1, Threshold = 0.5
Bernoulli Half-Envelope Calculated from the LHS “Exact” Answer (≅  0.4489)
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Figure 24 Comparison of MCS Errors to LHS Errors for Problem 1, Threshold = 0.5
Confidence Half-Envelope Calculated from the MCS “Exact” Answer (≅  0.4489)
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Figure 25 LHS Errors for Problem 1, Threshold = 1.0
Bernoulli Half-Envelope Calculated from the LHS “Exact” Answer (≅  7.662X10-3)
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Figure 26 Comparison of MCS Errors to LHS Errors for Problem 1, Threshold = 1.0
Confidence Half-Envelope Calculated from the MCS “Exact” Answer (≅  7.650X10-3)
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Figure 27 LHS Errors for Problem 1, Threshold = 1.5
Bernoulli Half-Envelope Calculated from the LHS “Exact” Answer (≅  2.574X10-4)
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Figure 28 Comparison of MCS Errors to LHS Errors for Problem 1, Threshold = 1.5
Confidence Half-Envelope Calculated from the MCS “Exact” Answer (≅  2.602X10-4)
21



102 103 104 105 106 107 108

Number of Samples
10-6

10-5

10-4

10-3

10-2

10-1

D
if

fe
re

nc
e 

fr
om

 L
H

S 
“E

xa
ct

” 
A

ns
w

er 95% Certainty
99% Certainty

Figure 29 LHS Errors for Problem 2, Threshold = 0.05
Bernoulli Half-Envelope Calculated from the LHS “Exact” Answer (≅  0.9825)
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Figure 30 Comparison of MCS Errors to LHS Errors for Problem 2, Threshold = 0.05
Confidence Half-Envelope Calculated from the MCS “Exact” Answer (≅  0.9825)
22



102 103 104 105 106 107 108

Number of Samples
10-6

10-5

10-4

10-3

10-2

10-1

100

D
if

fe
re

nc
e 

fr
om

 L
H

S 
“E

xa
ct

” 
A

ns
w

er 95% Certainty
99% Certainty

Figure 31 LHC Errors for Problem 2, Threshold = 0.2
Bernoulli Half-Envelope Calculated from the LHS “Exact” Answer (≅  0.4474)
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Figure 32 Comparison of MCS Errors to LHS Errors for Problem 2, Threshold = 0.2
Confidence Half-Envelope Calculated from the MCS “Exact” Answer (≅  0.4474)
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Figure 33 LHS Errors for Problem 2, Threshold = 0.4
Bernoulli Half-Envelope Calculated from the LHS “Exact” Answer (≅  3.548X10-2)
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Figure 34 Comparison of MCS to LHS Errors for Problem 2, Threshold = 0.4
Confidence Half-Envelope Calculated from the MCS “Exact” Answer (≅  3.549X10-2)
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Figure 35 LHS Errors for Problem 2, Threshold = 0.6
Bernoulli Half-Envelope Calculated from the LHS “Exact” Answer (≅  1.218X10-3)
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Figure 36 Comparison of Errors MCS to LHS Errors for Problem 2, Threshold = 0.6
Confidence Half-Envelope Calculated from the MCS “Exact” Answer (≅  1.216X10-3)
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not seem to be much of a difference. As will be shown later, considering the extra com-
putational time required for LHS sampling, it can be concluded that LHS usually takes
longer to achieve the same convergence. 

Close inspection of the graphs does bring out a couple of points that need clarifying.
First, although there are 10 runs for each LHS sample size except the 107 size sample, for
the smallest LHS sample size used in each graph, there are less than 10 visible data
points, generally around five. The reason for this is that the smaller sample sizes, the
greater the granularity of possible results. For example when using 1,000 LHS samples
to determine a probability around 1X10-3, one would expect that only 0 to 4 or so of the
samples will lead to a failure. Second, when comparing the two graphs in a pair of
graphs, one will often find that results do not seem to match up between the graphs. The
reason for this is that while the first graph in a pair calculates the “exact” answer from
the LHS results, the second graph calculates the “exact” answer from the MCS results.
At most, the two “exact” answers differ in the third significant figure. This can cause
great differences for results that are near either of the “exact” answers. The larger the
error compared to the “exact” answers, the smaller the effect caused by the difference of
the “exact” answers. 

6 Comparison of Computational Resources Requirements

The most significant difference between the MCS and LHS methods is the computa-
tional resources they require. The first part of this section discusses the memory and disk
space requirements for each method. The next section discusses timing results. All runs
for this report where done on one processor of a Sun workstation with two 296 MHz 
UltraSparc processors.

6.1    Memory and Disk Space

Disk space requirements depend on how the MCS and LHS methods are imple-
mented. If the samples are generated and used in a single program, the only disk space
required is that for output. On the other hand, if the samples are written to disk to be
used by another program, the disk space required can be significant. For example, using
Iman and Shortencarier’s LHS program to create 10 million samples of two variables
each with 14 decimal places of accuracy created an ASCII file 0.48GB in size. File size
will increase linearly with the number of samples. If the samples are written to the disk
with less precision or as a binary file, the disk space will decrease. 

One of the biggest differences between the MCS and the LHS methods is their memory
requirements. For MCS, memory requirements are negligible. Random numbers are
used as soon as they are generated. Therefore, all that is required is the memory needed
to hold the variables used by the random number generator (RNG), and the variables
used by the subroutine that converts uniform random numbers to another distribution.
If the calculations for the MCS trials are done in the same program that generates the
samples, then storage is also required for the variables used in the trials.
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The LHS method requires all memory described in the paragraph above and much
more. It has to have memory enough to store all the random numbers and then combine
them into samples. In the version of the LHSTEST code provided [Romero, 1997], if dou-
ble precision (8 byte) reals are used, the memory requirement in bytes is given by
8*NSAMP*(2*NVAR + 2.5), where NSAMP is the number of samples and NVAR is the
number of variables per sample. The 0.5 of the 2.5 represents a 4 byte integer array used
by the code. In the code provided, all reals are declared single precision and promoted to
double precision using the -r8 compiler flag. Using this flag, 4 byte integers require 8
bytes of storage. Under these conditions, the 2.5 in the memory requirement equation
listed above is replaced by a 3. Either formula can lead to impressive memory require-
ments. For ten million samples of 2 variables each, 496 to 534 MB of memory are
required. The upper range for memory is actually larger than the disk space required to
write the results to disk. With the current amount of memory available on machines,
most users will be limited to on the order of 100,000 to 1,000,000 samples when using the
LHS method. 

6.2    Comparisons of Run Time

Timing results for various cases are shown in Table 1. The “Case” column describes
the various cases. “P1” stands for problem 1 and “P2” stands for problem 2 (both prob-
lems are defined in Section 3). The numbers listed under the “Case” column are the
number of samples generated. 

Several different codes were tested. All LHS samples are generated by code based on
the version of the LHSTEST code given to us by Romero [1997]. The results of the previ-
ous sections came from three of the codes represented in the table. The program labeled
“MCS Single Program” is the program used to obtain the MCS results. This single pro-

Table 1 Timing Information: Total Time (User and System) (s)

Case MCS No 
Write

LHS No 
Write

No 
Write 
Ratio 
LHS/
MCS

MCS 
Write 

LHS 
Write 

MCS 
Single 

Program 

Solve 
from 

Sample 

P1, 106 3.3 40.7 12.3 37 74.9 5.5 36.1

P1, 107 33 495.9 16.30 377 849 55.8 368

P1, 108 560

P2, 106 3.3 37 74.9 3.5 32.6

P2, 107 33 377 849 35.2 333

P2, 108 330.8 352
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gram generates the random numbers, converts them to the proper distributions using
the Box-Muller method [Press et al., 1992], and calculates the results for each trial. The
only significant output from this program are the final results. The LHS results were
obtained using a two step process. First the LHSTEST program was used to generate the
normal samples which were then written to disk. The time for this activity is listed in the
“LHS Write” column. Next, the samples were read in by a program of our design and the
results of the trials were calculated. The time to run this program is listed under “Solve
from Sample.” Comparing the “MCS Single Program” results to the ”Solve from Sam-
ple” results, it was noted that the time required to write to the disk is very large. To
obtain an idea of how much time the writes to disk require, three more codes were
tested. “MCS Write” generates the normal samples and writes them to disk. The pro-
grams “MCS No Write” and “LHS No Write” are the “MCS Write” and “LHS Write”
modified still to calculate normal samples but not to write them to disk. As can be seen
from the table, programs that only generate random samples take the same time for
problem 1 and problem 2.

As mentioned before, each code ran on a 296MHz ultraSPARC processor. The worksta-
tion has 512 MB of RAM. All codes were compiled with the -O option. The -r8 compile
option was also set for the LHS. All codes used RAN2, which is the slowest of RNGs
tested by Zeeb and Burns [1999]. 

It should be noted that it takes 534 MB of RAM to generate ten million LHS samples.
Therefore the workstation was forced to use virtual memory to calculate these samples.
From the results it appears that the time spent swapping the virtual memory may not
have been included in the total time reported. When generating ten million samples,
there is a big discrepancy between the total time and the clock time and the penalty for
virtual memory in the total time seems small. Therefore, the timing results for ten mil-
lion LHS samples should not be taken as necessarily correct. It should also be noted that
the LHSTEST code we obtained is a large, not necessarily optimized code. It is compared
against much smaller, simpler MCS codes that are definitely optimized. Work is cur-
rently under way to rewrite the LHC code totally. This rewritten code may be much
faster. 

By comparing the “no write” and the “write” results, it is shown that MCS is much
faster than LHS. MCS is over 12 times faster generating a million samples than LHS. The
ratio between the two times increases when ten million samples are generated but it is
unclear how much of this change is due to virtual memory penalties. The ratio between
the MCS and LCS times depends on which RNG and which distribution are used in the
calculations. Faster RNGs and simpler distributions will increase the LHS to MCS time
ratio. The lagged Fibonacci generator implemented by Zeeb and Burns [1999] is seven
times faster than the generator that was used in this report, RAN2.

Another important fact obtained from the timing results is that the time spent writing
to disk is considerable. By comparing the “write” and “no write” results, it is shown that
writing a million random number pairs to disk takes about 34 seconds and the time
increases linearly as a function of the number of pairs. This time is more than ten times
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the amount of time it takes to generate the samples by MCS. It is almost the same
amount of time it takes to generate the samples by LHS. What makes this even worse, is
that once the samples are written to disk by one program, they must be read by another
program. The results above suggest that reading takes just as long as the writing. 

7 Conclusions and Recommendations

7.1    Comparing MCS and LHS

In Numerical Recipes, Press et al. [1992] describe LHS as “useful when you must sam-
ple an N-dimensional space exceedingly sparsely, at M points.” They further note that, “If
the response of the system under test is dominated by one of the design parameters, that
parameter will be found with this sampling technique. On the other hand, if there is an
important interaction among different design parameters, then the Latin hypercube
gives no particular advantage.”

The results of this report seem to confirm the above statements. Our sample problems
were functions of two normally distributed variables. Neither variable seemed to be
more important than the other. The LHS method has been found to converge only
slightly more quickly than MCS on the benchmark problems. On the other hand, it is
much slower than the MCS method. The exact ratio of the two methods depends on the
RNG and distribution chosen. In our benchmark problems, compared to the MCS
method, the LHS method takes 12 times longer to generate a million samples of two
variables each. This is probably a good indication of the general speed differences
between the two methods. In the same amount of time, the MCS method can almost cer-
tainly generate more accurate results in most cases. The LHS method would be most
beneficial in cases where the CPU time to convert the random number to another distri-
bution and/or to calculate the failure probability is very large. 

Furthermore, the maximum number of samples generated by the LHS code is limited
by memory. Generally only on the order of a million to ten million samples can be gener-
ated. The only limit on MCS samples is execution time. 

Due to the potential disadvantages LHS method mentioned above, we suggest that
further research into replacing the LHS method with the MCS method be done. 

7.2    Convergence Criteria

By applying the central limit theorem, two convergence criteria were obtained, the
confidence half-envelope, η, and the percent confidence half-envelope, δ. By graphing
the progress of 40 MCS runs, it is shown that the MCS results generally fall into a confi-
dence envelope with a probability equal to the probability of that envelope.

Furthermore it is shown that once the current MCS result, F*, is partially converged,
the error in using it to calculate the absolute confidence interval instead of F is negligi-
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ble. To obtain reasonable MCS probability estimates, the number of trials used must be
at least equal to 100 times the inverse of the actual probability. By that point the η calcu-
lated by F and F* are essentially the same. Therefore, using F* to calculate η as a conver-
gence criteria works well. 

η was also tested as a convergence criteria for LHS sampling. η was found to overesti-
mate the uncertainty of the LHS results. None of the 450 results were found to have an
error greater than the 99% confidence envelope and only about 1.1% of the results had
an error greater than the 95% confidence envelope. 

Using δ as a convergence criteria was not tested. Still, simple reasoning suggests that it
will be more sensitive to changes in F* than η, but will still be a very useful convergence
criteria.

It is suggested that work be done to start implementing η and δ as convergence crite-
ria. Past experience with Monte Carlo simulations have found good results are obtained
using a 95% δ. In the beginning, it may be helpful to run a problem twice using the same
confidence half-envelope and seeing how closely F* agrees between the two results.

7.3    Writing Samples to Disk

Reading and writing the samples to disk was found to be a very time intensive proce-
dure. Writing a million pair of variables to disk by the sample generating program and
then having another program read the samples off disk was found to take over 20 times
longer than it takes to generate the samples by MCS. 

Due to the considerable time savings, it is suggested that work be done to try to com-
bine the sample generating program and the program that processes the samples into
one program. The savings in run time and disk space will certainly make this worth the
time invested.

8 References

Iman R. L., and Shortencarier, M. J., 1984. “A FORTRAN 77 Program and User’s Guide 
for the Generation of Latin Hypercube and Random Samples to Use with Computer 
Models,” Sandia National Laboratories report SAND83-2365 (RG).

Kreyszig, E., 1993. Advanced Engineering Mathematics, 7th Ed., John Wiley & Sons, New 
York.

Maltby, J. D., 1990. Analysis of Electron Heat Transfer via Monte Carlo Simulation, Ph. D. Dis-
sertation, Department of Mechanical Engineering, Colorado State University, Fort Col-
lins, CO.
30



Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992. Numerical Reci-

pes in FORTRAN: The Art of Scientific Computing, 2nd Ed., Cambridge University Press, 
New York, NY.

Romero, V. J., 1997. Personal Communication, Sandia National Laboratories, Albuquer-
que, NM.

Romero, V. J. and Bankston, S. D., 1998a. “Monte Carlo Probability Estimation with 
Finite Element Response Surfaces Built from Progressive Lattice Sampling” presented at 
the joint AIAA/ASME/ASCE/AHS/ASC 39th Structures, Structural Dynamics, and 
Materials (SDM) Conference, April 20-23, 1998, Long Beach, CA.

Romero, V. J. and Bankston, S. D., 1998b. “Finite-Element/Progressive Lattice Sampling 
Response Surface Methodology and Application to Benchmark Probability Quantifica-
tion Problems,” Sandia Laboratories report SAND98-0567, unlimited release.

Ross, S., 1988. A First Course in Probability, 3rd Ed., Macmillian Publishing, New York. 

Zeeb, C. N., and Burns, P. J., 1999. “Random Number Generator Recommendation” 
Report prepared for Sandia National Laboratories, Albuquerque, NM. Available as a 
WWW document, URL =http://www.colostate.edu/~pburns/monte/documents.html.

Zeeb, C. N., Burns, P. J., Branner, K., and Dolaghan, J., 1999. User’s Manual for MONT3D - 

Version 2.4, Department of Mechanical Engineering, Colorado State University, Fort Col-
lins, CO. Available as a WWW document, URL =http://www.colostate.edu/~pburns/
monte/manual.html.

Zeeb, C. N., and Romero, V. J., 1999. “LAYMC: A Monte Carlo Code for Modeling Pho-
ton Transport in Layered Participating Media — Theory and User Manual version 2A”, 
to be published as a Sandia National Laboratories report (unlimited distribution), 
(Expected 99). 
31


	1 Introduction
	2 Error Estimates for MCS
	2.1 Bernoulli Random Variables
	2.2 The Central Limit Theorem and MCS Error Estimates

	3 Description of Benchmark Problems
	4 Verification of Error Estimate for MCS Results
	5 Application of MCS Error Estimates to LHS Results
	6 Comparison of Computational Resources Requirements
	6.1 Memory and Disk Space
	6.2 Comparisons of Run Time

	7 Conclusions and Recommendations
	7.1 Comparing MCS and LHS
	7.2 Convergence Criteria
	7.3 Writing Samples to Disk

	8 References

