
Factor of safety and probability of failure 

Introduction 

How does one assess the acceptability of an engineering design? Relying on judgement 

alone can lead to one of the two extremes illustrated in Figure 1. The first case is 

economically unacceptable while the example illustrated in the drawing on the right 

violates all normal safety standards. 

 

 

 

 

 

 

Figure 1:  Rockbolting alternatives involving individual judgement. (Drawings based on 

a cartoon in a brochure on rockfalls published by the Department of Mines of Western 

Australia.) 

 

 

Sensitivity studies 

The classical approach used in designing engineering structures is to consider the 

relationship between the capacity C (strength or resisting force) of the element and the 

demand D (stress or disturbing force).  The Factor of Safety of the structure is defined as 

F = C/D and failure is assumed to occur when F is less than unity. 
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Rather than base an engineering design decision on a single calculated factor of safety, 

an approach which is frequently used to give a more rational assessment of the risks 

associated with a particular design is to carry out a sensitivity study.  This involves a 

series of calculations in which each significant parameter is varied systematically over its 

maximum credible range in order to determine its influence upon the factor of safety.   

 

This approach was used in the analysis of the Sau Mau Ping slope in Hong Kong, 

described in detail in another chapter of these notes. It provided a useful means of 

exploring a range of possibilities and reaching practical decisions on some difficult 

problems. On the following pages this idea of sensitivity studies will be extended to the 

use of probability theory and it will be shown that, even with very limited field data, 

practical, useful information can be obtained from an analysis of probability of failure. 

 

An introduction to probability theory 

A complete discussion on probability theory exceeds the scope of these notes and the 

techniques discussed on the following pages are intended to introduce the reader to the 

subject and to give an indication of the power of these techniques in engineering decision 

making. A more detailed treatment of this subject will be found in a book by Harr (1987) 

entitled ‘Reliability-based design in civil engineering’.  A paper on geotechnical 

applications of probability theory entitled ‘Evaluating calculated risk in geotechnical 

engineering’ was published by Whitman (1984) and is recommended reading for anyone 

with a serious interest in this subject. Pine (1992), Tyler et al (1991), Hatzor and 

Goodman (1993) and Carter (1992) have published papers on the application of 

probability theory to the analysis of problems encountered in underground mining and 

civil engineering. 

 

Most geotechnical engineers regard the subject of probability theory with doubt and 

suspicion. At least part of the reason for this mistrust is associated with the language 

which has been adopted by those who specialise in the field of probability theory and risk 

assessment.  The following definitions are given in an attempt to dispel some of the 

mystery which tends to surround this subject. 

 

Random variables:  Parameters such as the angle of friction of rock joints, the uniaxial 

compressive strength of rock specimens, the inclination and orientation of discontinuities 

in a rock mass and the measured in situ stresses in the rock surrounding an opening do 

not have a single fixed value but may assume any number of values.  There is no way of 

predicting exactly what the value of one of these parameters will be at any given 

location. Hence, these parameters are described as random variables. 
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Probability distribution:  A probability density 

function (PDF) describes the relative likelihood that a 

random variable will assume a particular value.  A 

typical probability density function is illustrated 

opposite.  In this case the random variable is 

continuously distributed (i.e., it can take on all possible 

values).   The area under the PDF is always unity. 

 

An alternative way of presenting the same information 

is in the form of a cumulative distribution function 

(CDF), which gives the probability that the variable 

will have a value less than or equal to the selected 

value.  The CDF is the integral of the corresponding 

probability density function, i.e., the ordinate at x1 on 

the cumulative distribution is the area under the 

probability density function to the left of x1.  Note the 

fx(x) is used for the ordinate of a PDF while Fx(x) is 

used for a CDF. 

 

 

 

One of the most common graphical representations of a probability distribution is a 

histogram in which the fraction of all observations falling within a specified interval is 

plotted as a bar above that interval. 

 

Data analysis:  For many applications it is not necessary to use all of the information 

contained in a distribution function and quantities summarised only by the dominant 

features of the distribution may be adequate.   

 

The sample mean or expected value or first moment indicates the centre of gravity of a 

probability distribution. A typical application would be the analysis of a set of results 

nxxx ,........,, 21   from uniaxial strength tests carried out in the laboratory. Assuming that 

there are n individual test values xi, the mean x  is given by: 
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The sample variance s2
 or the second moment about the mean of a distribution is defined 

as the mean of the square of the difference between the value of xi and the mean value x .   
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Note that, theoretically, the denominator for calculation of variance of samples should be 

n, not (n - 1).  However, for a finite number of samples, it can be shown that the 

correction factor n/(n-1), known as Bessel's correction, gives a better estimate.  For 

practical purposes the correction is only necessary when the sample size is less than 30. 

 

The standard deviation s is given by the positive square root of the variance s2 .  In the 

case of the commonly used normal distribution, about 68% of the test values will fall 

within an interval defined by the mean ± one standard deviation while approximately 

95% of all the test results will fall within the range defined by the mean ±  two standard 

deviations. A small standard deviation will indicate a tightly clustered data set while a 

large standard deviation will be found for a data set in which there is a large scatter about 

the mean. 

 

The coefficient of variation (COV) is the ratio of the standard deviation to the mean, i.e. 

COV = s/ x .  COV is dimensionless and it is a particularly useful measure of uncertainty.  

A small uncertainty would typically be represented by a COV = 0.05 while considerable 

uncertainty would be indicated by a COV = 0.25. 

 

Normal distribution:  The normal or Gaussian distribution is the most common type of 

probability distribution function and the distributions of many random variables conform 

to this distribution. It is generally used for probabilistic studies in geotechnical 

engineering unless there are good reasons for selecting a different distribution.  

Typically, variables which arise as a sum of a number of random effects, none of which 

dominate the total, are normally distributed. 

 

The problem of defining a normal distribution is to estimate the values of the governing 

parameters which are the true mean ( µ ) and true standard deviation ( σ ). Generally, the 

best estimates for these values are given by the sample mean and standard deviation, 

determined from a number of tests or observations.  Hence, from equations 1 and 2: 

 

x=µ                (3) 

 

s=σ                    (4) 

 

It is important to recognise that equations 3 and 4 give the most probable values of µ  

and σ  and not necessarily the true values. 
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Obviously, it is desirable to include as many samples as possible in any set of 

observations but, in geotechnical engineering, there are serious practical and financial 

limitations to the amount of data which can be collected. Consequently, it is often 

necessary to make estimates on the basis of judgement, experience or from comparisons 

with results published by others.  These difficulties are often used as an excuse for not 

using probabilistic tools in geotechnical engineering but, as will be shown later in this 

chapter, useful results can still be obtained from very limited data. 

 

Having estimated the mean µ  and standard deviation σ , the probability density function 

for a normal distribution is defined by: 
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for −∞ ≤ ≤ ∞    x . 

 

As will be seen later, this range of −∞ ≤ ≤ ∞    x  can cause problems when a normal 

distribution is used as a basis for a Monte Carlo analysis in which the entire range of 

values is randomly sampled. This can give rise to a few very small numbers (sometimes 

negative) and very large numbers which, in certain analyses, can cause numerical 

instability. In order to overcome this problem the normal distribution is sometimes 

truncated so that only values falling within a specified range are considered valid. 

 

There is no closed form solution for the cumulative distribution function (CDF) which 

must by found by numerical integration. 

 

Other distributions: In addition to the commonly used normal distribution there are a 

number of alternative distributions which are used in probability analyses. Some of the 

most useful are: 

 

Beta distributions (Harr, 1987) are very versatile distributions which can be used to 

replace almost any of the common distributions and which do not suffer from the 

extreme value problems discussed above because the domain (range) is bounded by 

specified values. 

 

Exponential distributions are sometimes used to define events such as the occurrence of 

earthquakes or rockbursts or quantities such as the length of joints in a rock mass. 

 

Lognormal distributions are useful when considering processes such as the crushing of 

aggregates in which the final particle size results from a number of collisions of particles 

of many sizes moving in different directions with different velocities.  Such 
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multiplicative mechanisms tend to result in variables which are lognormally distributed 

as opposed to the normally distributed variables resulting from additive mechanisms. 

 

Weibul distributions are used to represent the lifetime of devices in reliability studies or 

the outcome of tests such as point load tests on rock core in which a few very high values 

may occur. 

 

It is no longer necessary for the person starting out in the field of probability theory to 

know and understand the mathematics involved in all of these probability distributions 

since commercially available software programs can be used to carry out many of the 

computations automatically. Note that the author is not advocating the blind use of 

‘black-box’ software and the reader should exercise extreme caution is using such 

software without trying to understand exactly what the software is doing. However there 

is no point in writing reports by hand if one is prepared to spend the time learning how to 

use a good word-processor correctly and the same applies to mathematical software. 

 

One of the most useful software packages for probability analysis is a Microsoft Excel 

add-in program called @RISK
1
 which can be used for risk evaluations using the 

techniques described below. 

 

Sampling techniques: Consider a problem in which the factor of safety depends upon a 

number of random variables such as the cohesive strength c, the angle of friction φ  and 

the acceleration α due to earthquakes or large blasts. Assuming that the values of these 

variables are distributed about their means in a manner which can be described by one of 

the continuous distribution functions such as the normal distribution described earlier, the 

problem is how to use this information to determine the distribution of factor of safety 

values and the probability of failure. 

 

The Monte Carlo method uses random or pseudo-random numbers to sample from 

probability distributions and, if sufficiently large numbers of samples are generated and 

used in a calculation such as that for a factor of safety, a distribution of values for the end 

product will be generated. The term ‘Monte Carlo’ is believed to have been introduced as 

a code word to describe this hit-and-miss technique used during secret work on the 

development of the atomic bomb during World War II (Harr 1987). Today, Monte Carlo 

techniques can be applied to a wide variety of problems involving random behaviour and 

a number of algorithms are available for generating random Monte Carlo samples from 

different types of input probability distributions. With highly optimised software 

programs such as @RISK, problems involving relatively large samples can be run 

efficiently on most desktop or portable computers. 

                                                 
1
 @RISK is available from www.palisade.com. 
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The Latin Hypercube sampling technique (Imam et al, 1980, Startzman and 

Watterbarger, 1985) is a relatively recent development which gives comparable results to 

the Monte Carlo technique but with fewer samples. The method is based upon stratified 

sampling with random selection within each stratum. Typically an analysis using 1000 

samples obtained by the Latin Hypercube technique will produce comparable results to 

an analysis using 5000 samples obtained using the Monte Carlo method. Both techniques 

are incorporated in the program @RISK. 

 

Note that both the Monte Carlo and the Latin Hypercube techniques require that the 

distribution of all the input variables should either be known or that they be assumed.  

When no information on the distribution is available it is usual to assume a normal or a 

truncated normal distribution. 

 

The Generalised Point Estimate Method, developed by Rosenbleuth (1981) and 

discussed in detail by Harr (1987), can be used for rapid calculation of the mean and 

standard deviation of a quantity such as a factor of safety which depends upon random 

behaviour of input variables. Hoek (1989) discussed the application of this technique to 

the analysis of surface crown pillar stability while Pine (1992) has applied this technique 

to the analysis of slope stability and other mining problems.  

 

To calculate a quantity such as a factor of safety, two point estimates are made at one 

standard deviation on either side of the mean ( µ σ± ) from each distribution representing 

a random variable. The factor of safety is calculated for every possible combination of 

point estimates, producing 2
n
 solutions where n is the number of random variables 

involved. The mean and the standard deviation of the factor of safety are then calculated 

from these 2
n
 solutions. 

 

While this technique does not provide a full distribution of the output variable, as do the 

Monte Carlo and Latin Hypercube methods, it is very simple to use for problems with 

relatively few random variables and is useful when general trends are being investigated. 

When the probability distribution function for the output variable is known, for example, 

from previous Monte Carlo analyses, the mean and standard deviation values can be used 

to calculate the complete output distribution. 

 

Some of the techniques described above have been incorporated into specialized 

commercial software packages and one of these called RocPlane
2
 will be used to analyse 

the Sau Mau Ping slope. 

                                                 
2
 Available from www.rocscience.com 
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Probability of failure 

In the case of the Sau Mau Ping slope problem the input parameters and assumed 

distributions for the calculation of the factor of safety of the overall slope with a tension 

crack are as follows: 

 

 
1. Fixed dimensions: 

  Overall slope height          H    = 60 m 

  Overall slope angle         ψ f = 50° 

  Failure plane angle         ψ p = 35° 

Upper slope inclination        horizontal 

Bench width bmax = H(cot ψp - Cot ψf)   bmax = 35.34 m 

Unit weight of rock         γ r = 2.6 tonnes/m
3
   

Unit weight of water         γ w = 1.0 tonnes/m
3
  

 

2. Random variables        Mean values   Standard     Distribution 

                     deviation 

Friction angle on joint surface    φ  = 35°      ± 5  Normal 

Cohesive strength of joint surface   c  = 10 tonnes/m
2
   ± 2  Normal 

Depth of tension crack       z = 14 m      ± 3  Normal 

Distance from crest to tension crack  b = 15.3 m     ± 4  Normal 

Depth of water in tension crack    zw = z/2  min = 0, max = z  Exponential 

Ratio of horizontal earthquake  

to gravitational acceleration     α = 0.08  min = 0, max = 2α Exponential
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Figure 2:  Distributions of random input 

variables for the Sau Mau Ping slope. 

 

 

 

Figure 2 illustrates the plots of the probability distribution functions of the random input 

variables. It is worth discussing each of the plots in detail to demonstrate the reasoning 

behind the choice of the probability distribution functions. 
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Friction angle φ  - A truncated normal distribution has been assumed for this variable. 

The mean is assumed to be 35° which is the approximate centre of the assumed shear 

strength range illustrated in Figure 8 of “A slope stability problem in Hong Kong”. The 

standard deviation of 5° implies that about 68% of the friction angle values defined by 

the distribution will lie between 30° and 40°. The normal distribution is truncated by a 

minimum value of 15° and a maximum value of 70° which have been arbitrarily chosen 

as the extreme values represented by a smooth slickensided surface and a fresh, rough 

tension fracture. 

 

Cohesive strength c - Again using the assumed range of shear strength values illustrated 

in Figure 8 of “A slope stability problem in Hong Kong”, a value of 10 tonnes/m
2
 has 

been chosen as the mean cohesive strength and the standard deviation has been set at 2 

tonnes/m
2
 on the basis of this diagram. In order to allow for the wide range of possible 

cohesive strengths the minimum and maximum values used to truncate the normal 

distribution are 0 and 25 tonnes/m
2
 respectively. Those with experience in the 

interpretation of laboratory shear strength test results may argue that the friction angle φ  

and the cohesive strength c are not independent variables as has been assumed in this 

analysis. This is because the cohesive strength generally drops as the friction angle rises 

and vice versa. The program @RISK allows the user to define variables as dependent 

but, for the sake of simplicity, the friction angle φ  and the cohesive strength c have been  

kept independent for this analysis. 

 

Distance of tension crack behind face b – The program RocPlane uses the horizontal 

distance b of the tension crack behind the slope crest as input in place of the tension 

crack depth z because b can be measured in the field and also because it is not influenced 

by the inclination of the upper slope. Hoek and Bray (1974) give the value of b as   

( )fpfHb ψψψ cottancot −=  with the limits as 0 < b < ( )fpH ψψ cotcot − . 

 

Tension crack depth z - Equation 6 in “A slope stability problem in Hong Kong”, 

defining the tension crack depth, has been derived by minimisation of equation 5 in that 

chapter. For the purposes of this analysis it has been assumed that this value of z (14 m 

for the assumed conditions) represents the mean tension crack depth. A truncated normal 

distribution is assumed to define the possible range of tension crack depths and the 

standard deviation has been arbitrarily chosen at 3 m. The minimum tension crack depth 

is zero but a value of 0.1 m has been chosen to avoid possible numerical problems. The 

maximum tension crack depth is given by )tan/tan1( fpHz ψψ−=  = 24.75 m which 

occurs when the vertical tension crack is located at the crest of the slope.  
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Water depth zw in tension crack - The water which would fill the tension crack in this 

slope would come from direct surface run-off during heavy rains. In Hong Kong the 

heaviest rains occur during typhoons and it is likely that the tension crack would be 

completely filled during such events. The probability of occurrence of typhoons has been 

defined by a truncated exponential distribution where the mean water depth is assumed to 

be one half the tension crack depth. The maximum water depth cannot exceed the tension 

crack depth z and, as defined by the exponential distribution, this value would occur very 

rarely. The minimum water depth is zero during dry conditions and this is assumed to be 

a frequent occurrence.  

 

Ratio of horizontal earthquake acceleration to gravitational acceleration α - The 

frequent occurrence of earthquakes of different magnitudes can be estimated by means of 

an exponential distribution which suggests that large earthquakes are very rare while 

small ones are very common. In the case of Hong Kong local wisdom suggested a 

‘design’ horizontal acceleration of 0.08g. In other words, this level of acceleration could 

be anticipated at least once during the operating life of a civil engineering structure. A 

rough rule of thumb suggests that the ‘maximum credible’ acceleration is approximately 

twice the ‘design’ value. Based upon these very crude guidelines, the distribution of 

values of α used in these calculations was defined by a truncated exponential distribution 

with a mean value of α = 0.08, a maximum of 0.16 and a minimum of 0. 

 
 

Figure 3:  RocPlane model of Sau Mau Ping slope. 
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Using the distributions shown in Figure 2, the RocPlane model shown in Figure 3 was 

used, with Latin Hypercube sampling, to carry out 5,000 iterations on the factor of safety. 

The resulting probability distribution is plotted in Figure 4. This histogram gives a mean 

factor of safety of 1.34 with a standard deviation of 0.23, a minimum of 0.61 and a 

maximum of 2.33. The best fit distribution is a beta distribution with the same mean, 

standard deviation, minimum and maximum. 

 

 
 

 

Figure 4: Distribution of the factor of safety for the Sau Mau Ping slope computed by 

means of the program RocPlane. 

 

 

The calculated probability of failure is found to be 6.4% and is given by the ratio of the 

area under the distribution curve for F<1 (shown in red in Figure 4) divided by the total 

area under the distribution curve.  This means that, for the combination of slope 

geometry, shear strength, water pressure and earthquake acceleration parameters 

assumed, 64 out of 1000 similar slopes could be expected to fail at some time during the 

life of the slope. Alternatively, a length of 64 m could be expected to fail in every 1000 

m of slope. 
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This is a reasonable risk of failure for short term conditions and a risk of this magnitude 

may be acceptable in an open pit mine, with limited access of trained miners, and even 

on a rural road.  However, in the long term, this probability of failure is not acceptable 

for a densely populated region such as Kowloon. As described in the chapter “A slope 

stability problem in Hong Kong”, remedial measures were taken to improve the long 

term stability of the slope and the effectiveness of these remedial measures could be 

evaluated using the same probabilistic techniques as described above. 
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