

Introduction to Engineering Reliability

Robert C. Patev

North Atlantic Division – Regional Technical Specialist

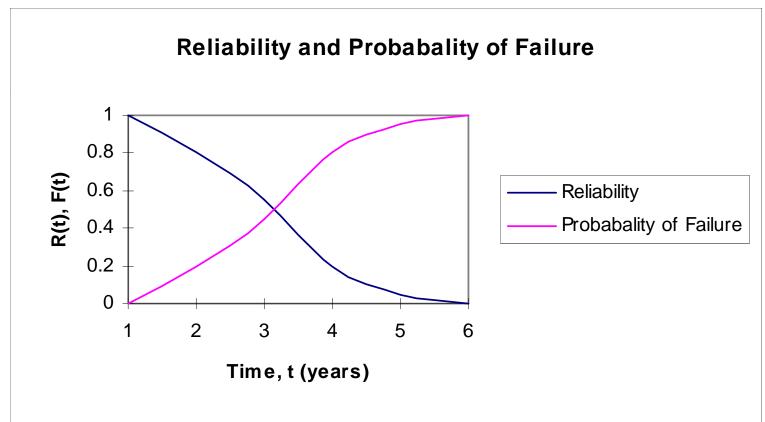
(978) 318-8394

Topics

- Reliability
- Basic Principles of Reliability Analysis
 - Non-Probabilistic Methods
 - Probabilistic Methods
 - First Order Second Moment
 - Point Estimate Method
 - Monte Carlo Simulation
 - Response Surface Modeling

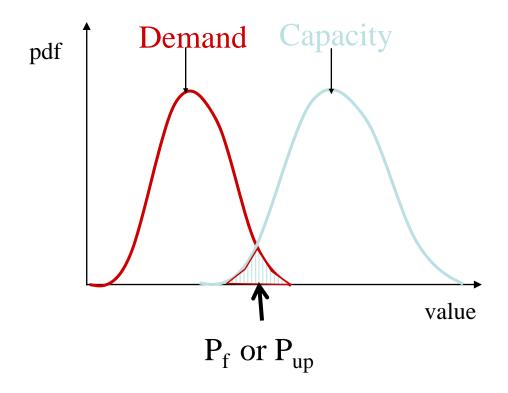
Reliability

 "Probability that a system will perform its intended function for a <u>specific period of time</u> under a <u>given set of conditions</u>"


$$R = 1 - P_f$$

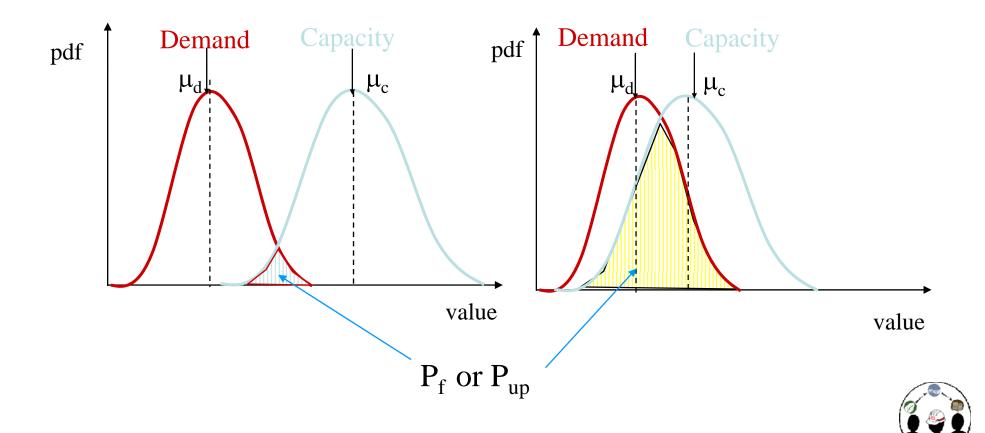
 Reliability is the probability that unsatisfactory performance or failure will not occur

Reliability

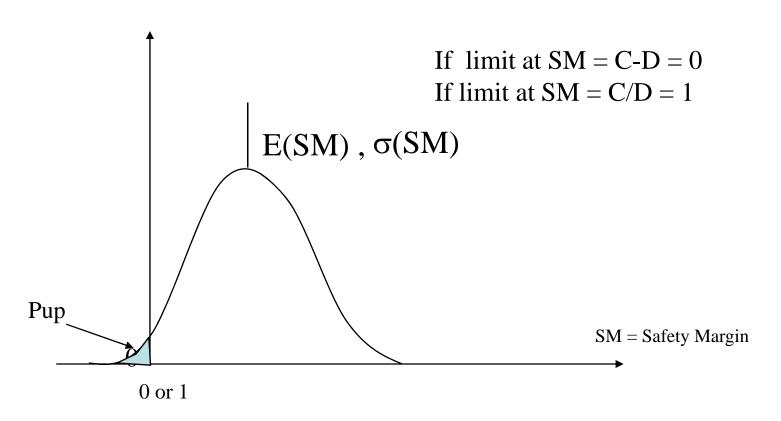


- Probability of Failure, "P_f"
 - Easily defined for recurring events and replicate components (e.g., mechanical and mechanical parts)
- Probability of Unsatisfactory Performance,
 P(u) "Pup"
 - Nearly impossible to define for non-recurring events or unique components (e.g., sliding of gravity structures)

Reliability



Reliability



Reliability

Safety Margins

Basic Principles of Reliability Analysis

- Identify critical components
- Use available data from previous design and analysis
- Establish base condition for component
- Define performance modes in terms of past levels of unsatisfactory performance
- Calibrate models to experience
- Model reasonable maintenance and repair scenarios and alternatives

Non-Probabilistic Reliability Methods

- Historical Frequency of Occurrence
- Survivorship Curves (hydropower equipment)
- Expert Opinion Elicitation

Probabilistic Reliability Methods

- Reliability Index (β) Methods
 - First Order Second Moment (Taylor Series)
 - Advanced Second Moment (Hasofer-Lind)
 - Point Estimate Method
- Time-Dependent (Hazard Functions)
- Monte Carlo Simulation
- Response Surface Modeling

Historical Frequencies

- Use of known historical information for records at site to estimate the failure rates of various components
- For example, if you had 5 hydraulic pumps in standby mode and each ran for 2000 hours in standby and 3 failed during standby.
 The failure rate during standby mode is:

Total standby hours = 5(2000 hours) = 10,000 hours

Failure rate in standby mode = 3 / 10,000

= 0.0003 failures per hour

Manufacturers' survivorship/mortality curves

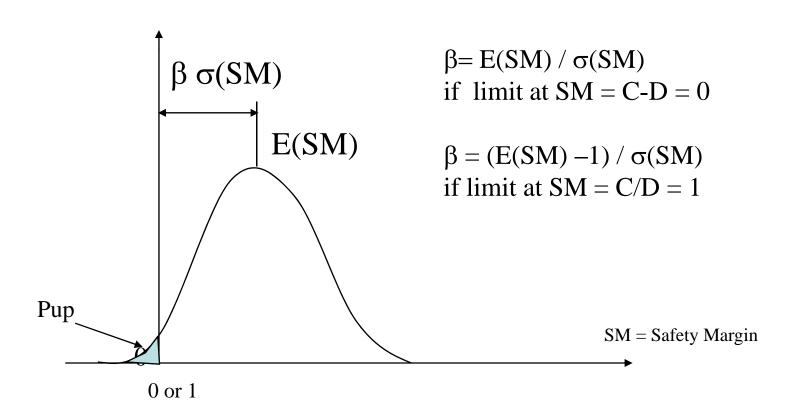
- Curves are available from manufacturers' for different motors, pumps, electrical components, etc...
- Curves are developed from field data and "failed" components
 - Caution is to be exercised on mode of failure
 - Failure data may have to be censored
- However, usually this data id not readily available for equipment at Corps projects except mainly hydropower facilities
- Report available at IWR on hydropower survivorship curve as well as many textbooks on the subject

Expert Opinion Elicitation (EOE)

- Solicitation of "experts" to assist in determining probabilities of unsatisfactory performance or rates of occurrence.
- Need proper guidance and assistance to solicit and train the experts properly to remove all bias and dominance.
- Should be documented well for ATR/IEPR
- Some recent projects that used EOE
 - John Day Lock and Dam Dam Anchorage, NWP

Probabilistic Methods

- Reliability models are:
 - defined by random variables and their underlying distributions
 - based on limit states (analytical equations) similar to those use in the design of engineering components
 - based on capacity/demand or factor of safety relationships
- One method is the Reliability Index or β method



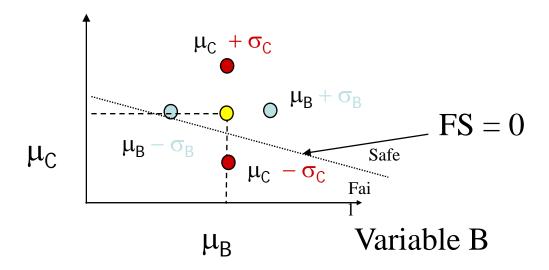
Reliability

<u>β Method - Normal Distribution</u>

Reliability Index (β) Methods

Taylor Series Finite Difference

(Cornell, 1969 and Rosenblueth, 1972)


- First-order expansion about mean value
- <u>Linear</u> approximation of second moment
- Uses analytical equations (deflection, moment, stress/strain, etc...)
- Easy to implement in spreadsheets
- Requires 2n+1 sampling (n = number of variables)
- Results in a Reliability Index value (β)
 - Based on E(SM) and σ (SM)
- Problem: caution should be exercised on non-linear limit states

Taylor Series Finite Difference

Variable C

Reliability Example

 Determine the reliability of a tension bar using the TSFD reliability index (β) method

Limit State = $F_t A / P$

Reliability Example

Random Variables

- Ultimate tensile strength, F_t
 - mean, $\mu = 40$ ksi; standard deviation, $\sigma = 4$ ksi
 - assume normal distribution
- Load, P
 - mean, $\mu = 15$ kips; standard deviation, $\sigma = 3$ kips,
 - assume normal distribution
- Area, A
 - constant (no degradation) circular cross section, A = 0.5 in²

Reliability Example

Mean FS

• $\mu_{FS} = 40(0.50)/15 = 1.333$

Standard Deviation FS

- Ft FS+ = 44 (0.5)/15 = 1.467 FS- = 36 (0.5)/15 = 1.20
- P FS+ = 40 (0.5)/18 = 1.111 FS- = 40 (0.5)/12 = 1.667
- $\sigma_{FS} = ([(1.467 1.200) / 2]^2 + [(1.111 1.667) / 2]^2)^{1/2}$
- $\sigma_{FS} = (0.134^2 + 0.278^2)^{1/2}$
- $\sigma_{FS} = 0.309$

Reliability Example

Reliability Index

$$\beta = E[SM]-1/\sigma[SM] = 0.333/0.309$$

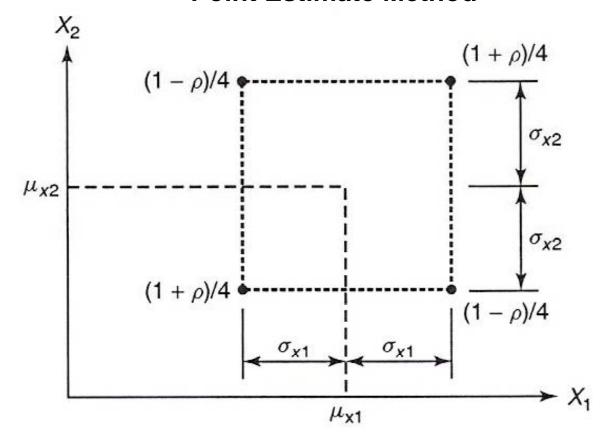
$$-\beta = 1.06$$

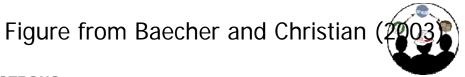
$$- P(u) = 0.14$$

$$-R = 1 - P(u) = 0.86$$

- Reliability Index (β) Methods
- Point Estimate Method

(Rosenblueth (1975))


- Based on analytical equations like TSFD
- Quadrature Method
- Finds the change in performance function for all combinations of random variable, either plus or minus one standard deviation
 - For 2 random variables ++, +-, -+, -- (+ or is a standard deviation)
- Requires 2ⁿ samplings (n = number of random variables)
- Results in a Reliability Index value (β)
 - Based on E(SM) and σ (SM)



Point Estimate Method

Point Estimate Method

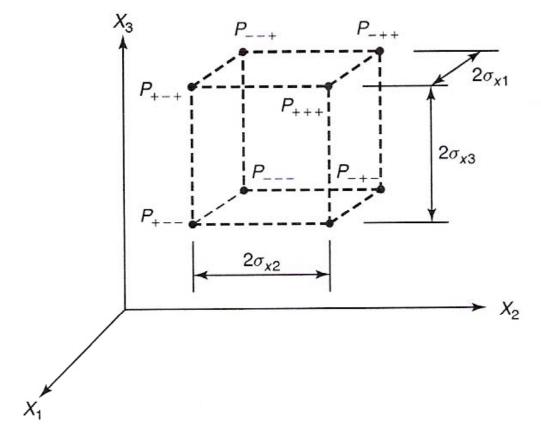
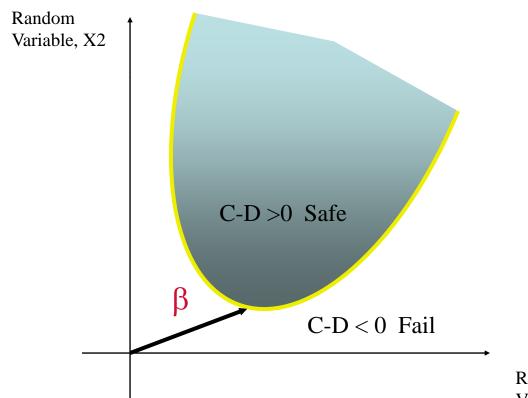


Figure from Baecher and Christian (2

Reliability Index (β) Methods


- Advanced Second Moment (Hasofer-Lind 1974, Haldar and Ayyub 1984)
 - Based on analytical equations like PEM
 - Uses directional cosines to determine shortest distance (β) to multi-dimensional failure surface
 - Accurate for non-linear limit states
 - Solved in spreadsheets or computer programs

Reliability

Random Variable, X1

- Reliability Index (β) Methods
- Shortcomings
 - Instantaneous capture a certain point in time
 - Index methods <u>cannot</u> be used for timedependent reliability or to estimate hazard functions even if fit to Weibull or similar distributions
 - Incorrect assumptions are sometimes made on underlying distributions to use β to estimate the probability of failure

Monte Carlo Simulation

- "Monte Carlo" is the method (code name) for simulations relating to development of atomic bomb during WWII
 - Traditional static not dynamic (not involve time), U(0,1)
 - Non-Traditional multi-integral problems, dynamic (time)
- Applied to wide variety of complex problems involving random behavior
- Procedure that generates values of a random variable based on one or more probability distributions
- Not simulation method per se just a name!

Monte Carlo Simulation

- Usage in USACE
 - Development of numerous state-of-the-art USACE reliability models (structural, geotechnical, etc..)
 - Used with analytical equations and other advanced reliability techniques
 - Determines P_f directly using output distribution
 - Convergence must be monitored
 - Variance recommend

Monte Carlo Simulation

- Reliability
 - Determined using actual distribution or using the equation:

$$R = 1 - P(u)$$

where,
$$P(u) = N_{pu} / N$$

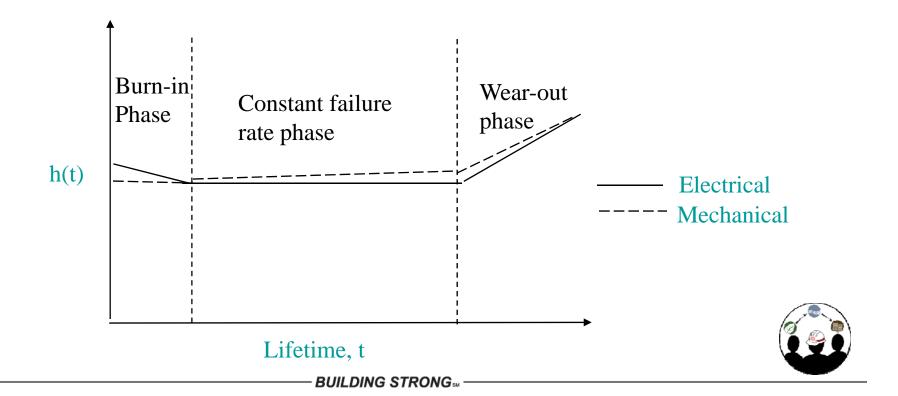
 N_{pu} = Number of unsatisfactory performances at limit state < 1.0

N = number of iterations

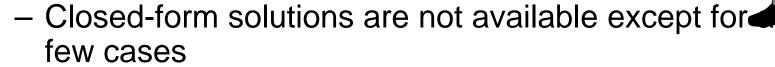
Hazard Functions

- Background
 - Previously used reliability index (β) methods
 - Good estimate of relative reliability
 - Easy to implement
 - Problem: "Instantaneous" snapshot in time

Hazard Functions/Rates


- Started with insurance actuaries in England in late 1800's
 - They used the term mortality rate or force of mortality
- Brought into engineering by the Aerospace industry in 1950's
- Accounts for the knowledge of the past history of the component
- Basically it is the rate of change at which the probability of failure changes over a time step
- Hazard function analysis is not snapshot a time (truly cumulative)
 - Utilizes Monte Carlo Simulation to calculate the true probability of failure (no approximations)
- Easy to develop time-dependent and non-time dependent models from deterministic engineering design problems

Typical Hazard Bathtub Curve

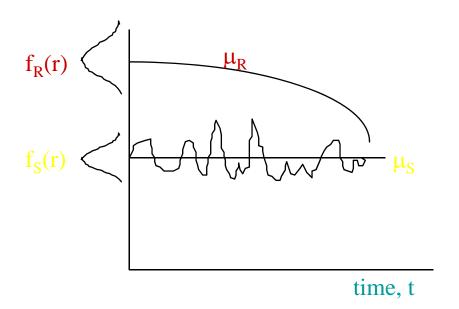


Ellingwood and Mori (1993)

$$-L(t) = \int_{0}^{\infty} \exp\left[-\lambda t \left[1-1/t\right] \int_{0}^{t} F_{S}(g(t)r) dt\right] f_{R}(r) dr$$

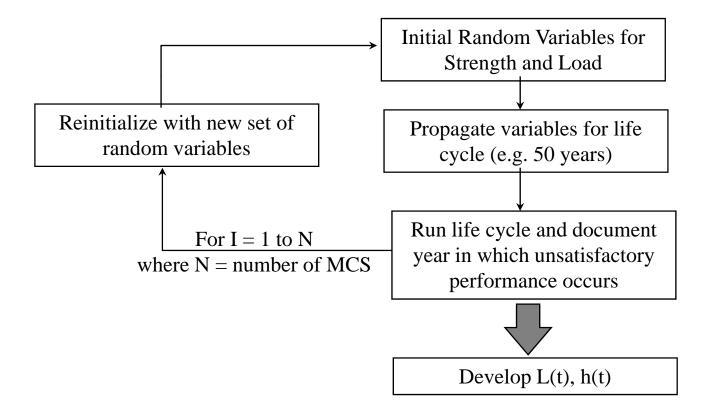
- $-F_S = CDF$ of load
- -g(t)r = time-dependent degradation
- $-f_R(r)dr = pdf$ of initial strength
- \square λ = mean rate of occurrence of loading

 Solution: Utilize monte carlo simulations to examine the "life cycle" for a component or structure



Hazard Functions

- Degradation of Structures
 - Relationship of strength (R) (capacity) vs. load (S) (demand)



Life Cycle

Hazard Function (conditional failure rate)

Developed for the ORMSSS
 economists/planners to assist in performing their economic simulation analysis for ORMSSS investment decisions

$$-h(t) = P[fail in (t,t+dt)| survived (0,t)]$$

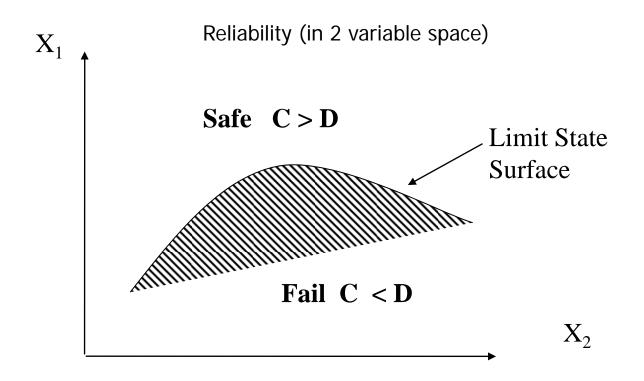
$$-h(t) = f(t) / L(t)$$

No. of failures in t
 No. of survivors up to t

- Response Surface Methodology (RSM)
 - Reliability is expressed as a limit state function, Z which can be a function of random variables, X_n, where

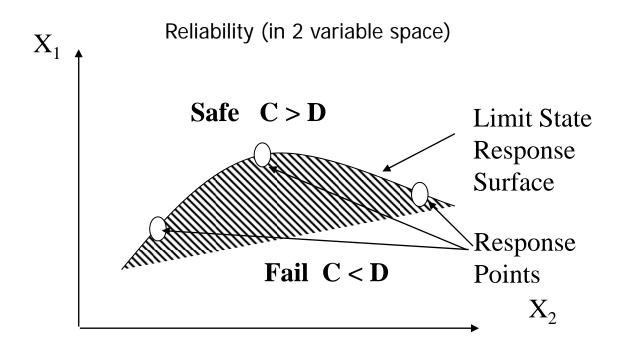
$$Z = g(X_1, X_2, X_3,...)$$

and the limit state is expressed as

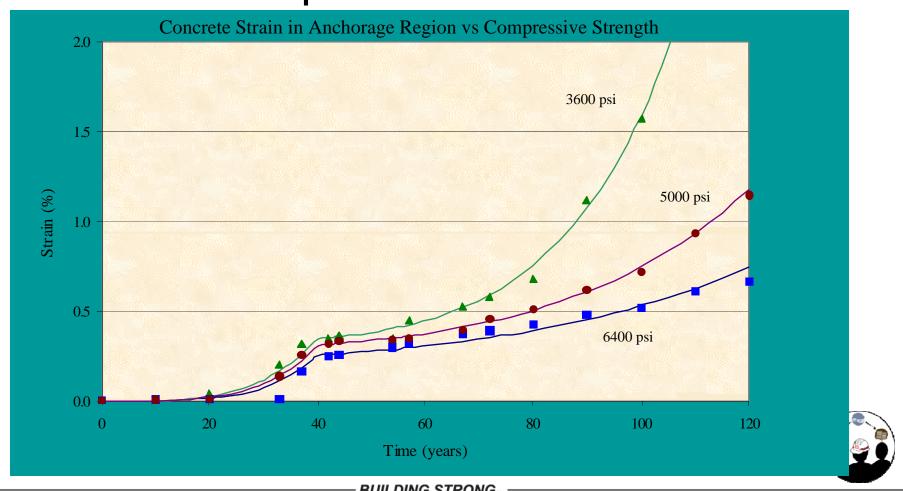

$$Z = C - D > 0$$

where D is demand and C is capacity

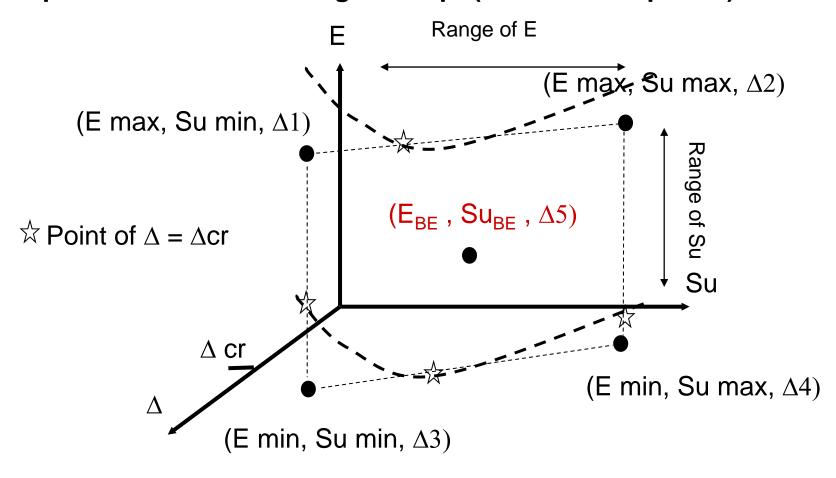
- Utilizes non-linear finite element analysis to define to the response surface
- Not closed form solution but close approximation
- Constitutive models generally not readily available for performance limit states
 - Typical design equations generally are not adequate to represent limit state for performance



- Accounts for variations of random variables on response surface
- Reflects realistic stresses/strains, etc. that are found in navigation structures
- Calibrated to field observations/measurements
- Develop response surface equations and use Monte Carlo Simulation to perform the reliability calculations
- Recent USACE Applications
 - Miter Gates (welded and riveted)
 - Tainter Gates
 - Tainter Valves (horizontally and vertically framed)
 - Alkali-Aggregate Reaction



Response Surfaces


- Response Surface Methodology
 - Proposed Methodology for I-Wall Reliability
 - Assumptions
 - Poisson ratio constant
 - Random variables E, Su (G, K)
 - Limit state based on deflection (Δ) at ground surface
 - g (Δ) = f(E, Su) = $\Delta_{cr}/\Delta < 1.0$

Response Surface Modeling Concept (under development)

Reliability

- Preferred Methods
 - For non-time dependent reliability problems
 - <u>Linear</u> Taylor Series Finite Difference, Point Estimate or Monte Carlo Simulation
 - Assume normal distributions for TSFD
 - Assume any distributions for MCS
 - Non-Linear Advanced Second Moment or Monte Carlo Simulation
 - For <u>time-dependent</u> reliability problems
 - Hazard Function/Rates using Monte Carlo Simulation

