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Abstract: This paper surveys the main difficulties involved with the quantitative measurement of 
operational risk and proposes simulation methods as a practical solution for obtaining the aggregate 
loss distribution. An example that calculates both expected and unexpected losses as well as 
operational risk VAR is provided.  
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Introduction  
 
One of the most difficult tasks in risk management is to set the appropriate level of capital to 
cover unexpected losses in banks and other financial institutions. Whereas expected losses 
can be described as the “usual” or average losses that an institution incurs in its natural 
course of business, unexpected losses are deviations from the average that may put an 
institut ion’s stability at risk.  Not only risk managers are worried about these types of losses, 
but also regulators and financial supervisors, hence international standards are being 
continuously developed and improved to prevent institutions from going bankrupt due to 
these large potential losses.  The most widespread of these standards is The New Basel Capital 
Accord, also known as Basel II.2 
 
Whereas some standard models exist in credit risk to calculate unexpected losses (see, for 
example, Navarrete 2005a), in operational risk the calculation of unexpected loss is more 
difficult since one usually takes into account the frequency and severity components of the 
loss distribution separately. Frequency refers to how often a loss event happens, and is 
measured in terms of number of events per time units. It is described by a discrete 
distribution. Severity depends on the monetary impact of the event, and is described by a 
continuous distribution. In operational risk both components have to be considered 
separately, since there exist loss events with low frequency but high severity (eg. 
catastrophes, damage to physical assets); on the other hand, there are plenty of high-
frequency, low severity events (eg. small credit frauds, accounting errors, etc.). Obviously, 
there is a huge range of events in-between. 
 
 
 

                                                                 
1 CEO, Scalar Consulting. Actively involved as risk advisor and consultant to private and public banks, he also 
collaborates closely with financial regulators.  He can be reached at enavarrete@grupoescalar.com. 
2 BCBS (2004).   
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Calculation of Aggregate Loss Distributions and Capital Requirements for 
Operational Risk 
 
To establish the appropriate level of capital to cover unexpected losses due to operational 
risk one first has to establish an adequate confidence level.  A confidence level is a 
statistical concept which corresponds, intuitively, to the probability that an institution will 
not go bankrupt or fail in some business line due to extreme losses. Obviously, one would 
like to establish confidence levels close to 100 %. In practice, however, this is not possible 
since loss distributions are never perfectly identified using (usually incomplete) historical 
data, and even if we could perfectly identify these loss distributions, the level of capital 
required would be too high (and costly).  Nevertheless, the confidence levels used in risk 
management usually lie in the range from 95 % to 99 % and higher.3 
 
Once we have defined the confidence level at which we would like to cover unexpected 
losses, the calculation of the corresponding amount of capital involves the following steps:  
 

i)    Frequency and severity distributions are identified from the data;  
 

ii)   Both distributions are combined to obtain an aggregate loss distribution; 
 

iii)  Operational Value at Risk (VAR) is obtained by taking the percentile of the   
       aggregate loss distribution at the desired confidence level.  

 
Unexpected loss is the difference between VAR and expected loss, as Figure 1 shows. This 
is the amount of capital that the institution should establish to cover unexpected losses for 
operational risk corresponding to the desired confidence level. 4 

        
 
 

 
 
 
 
 

 
 
 
 
 
 
Figure 1:  Expected Loss (EL), Unexpected Loss (UL) and VAR (P99,9) at the 99,9 % confidence 
level  
 
 
                                                                 
3 Basel II suggests 99,9 %.  This is equivalent to taking the 10th largest loss in 10,000 losses obtained by 
running a simulation, as will be discussed below.   
4 Note that in Figure 1 expected loss is simply the expected value (mean) of the distribution, E(S), VAR at the 
99,9 % level is the percentile at such level, P99,9 , and unexpected loss (UL) is the difference between them.   
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We should note that one usually establishes a prudential level of capital not for the bank as a 
whole but for specific types of loss events (such as internal fraud, external fraud, etc.) and 
for its different business lines. The example that will be provided below (using simulation) 
will calculate the amount of capital needed to cover potential losses due to external fraud in 
the credit card business line of a small banking institution. 5 
 
The main difficulty of the procedure described above, however, lies in step (ii), ie. in the 
“combination” or aggregation of the frequency and severity distributions obtained from the 
data.  As mentioned above, both distributions consist of a completely different nature, since 
the first is a discrete distribution, expressed in terms of number of events per time units (eg. 
number of frauds per month), while the second is a continuous  distribution, expressed in 
monetary units (eg. dollars). Hence both distributions are not directly additive or 
multiplicative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Aggregate Loss Distribution (S) 
 
To combine both types of distributions there are basically two approaches: closed form and 
open form solutions.  
 
Closed form solutions involve solving analytical formulas. For the problem at hand the 
most straightforward closed form solution is to combine distributions by means of a (mostly 
theoretical) mathematical operation, called convolution, represented by the * (star) symbol. 
This operation usually involves solving complicated integrals.   
 
An alternative method to combine both distributions (still closed-form) is not to deal with 
them directly, but to take some transformation that allows to manipulate the distributions 
more efficiently. Such a transformation is the Fourier transform, which operates on the 
frequency domain. This approach involves dealing with trigonometric functions (such as 
sines and  cosines), and complex numbers.  Since Fourier transforms are multiplicative, once 
we obtain the transforms of the distributions we obtain their product (an easier operation 
than convolution !) To obtain the aggregate loss distribution we take the inverse Fourier 
transform of this product.   
 
                                                                 
5 See Navarrete (2002) for a thorough discussion of types of loss events, business lines and database structure.    
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Both procedures are shown in Figure 3.6 
 
1) Convolution: 
 
 
 
 
2) Fourier Transform: 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Comparison of Convolution and Fourier Transforms  
 
As it may be expected, this way of obtaining the aggregate loss distribution may be daunting 
(and usually frustrating) for medium and small financial institutions that lack statisticians, 
mathematicians, or similar professionals in their risk departments. Even though better 
algorithms (such as the Fast Fourier Transform) have been applied to deal with these 
mostly theoretical problems, the calculations involved would place the critical calculation of 
prudential capital requirements beyond the reach of most financial institutions.7 
 
Simulation Methods   
 
In contrast to closed-form solutions that involve solving theoretical formulas and equations, 
an alternative way to obtain the aggregate loss distribution is by means of open form 
solutions , in which an algorithm is cleverly implemented in a computer and it does the job. 
 
Monte Carlo simulation is one of these methods. Using simulation we can produce 
different scenarios for frequency and severity of losses by generating random numbers using 
each type of distribution (identified using actual loss data). The aggregation issue is 
straightforward since for the different scenarios each potential loss is generated according to 
a simulation that uses the frequency distribution identified from the data. 
  
 
 
                                                                 
6 This figure illustrates the case for 2 distributions, but it can naturally be extended to the n-case. This type of 
procedures that involve taking some transform of the distributions and then taking an inverse are usually 
referred to as  inversion methods. 
7 Another method to handle joint loss distributions consists of the use of copulas .  Despite its recent popularity, 
this method is also closed form and therefore its usefulness has been very limited; practical implementation 
algorithms are being currently developed. 
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Date 
Fraud 

Amount ($)
26/01/2003 1,285.73      
18/01/2003 1,268.10      
26/01/2003 1,392.33      
08/01/2003 1,257.85      
20/01/2003 1,261.13      
22/02/2003 1,252.79      

…
09/08/2004 1,251.90      
13/09/2004 1,347.66      
26/09/2004 1,282.30      
19/09/2004 1,269.83      
12/10/2004 1,312.61      
27/10/2004 1,256.37      
23/10/2004 1,299.78      

N : 100              
Mean: 1,306.5        

 
Within the realm of simulation there exist some efficient methods, such as Latin 
Hypercube , in which random numbers are generated according to the frequency implied by 
the shape of the probability distribution ie. more random numbers are generated at the 
regions of the distribution where there exists more probability, hence random numbers are 
not “wasted”. 8 
 
The best way to understand to understand simulation is by means of an actual example. 
 
Suppose we have the following data from external frauds committed in the credit card 
business line at a small banking institution (N = 100 data points). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Credit card fraud database 
 
These small data sets are usually found in practice for some types of events (which are either 
rare or not well documented, but nonetheless important !)  Note also that loss data may be 
highly skewed or truncated due to credit line limits and other constraints.9   
 
Since the data in Figure 4 are in monetary units (dollars) and represent the severity of 
losses, we will fit a continuous  distribution to them. It turns out that the continuous 
distribution that best fits the data is the Pareto distribution, with parameters ? = 23, a 
=1250.  Hence this is  the distribution that will be used to simulate the severity of potential 
losses.10   

                                                                 
8 For further technical explanations on simulation and other open form solutions (such as Panjer’s algorithm), 
see Navarrete (2006b). 
9 Loss figures for different business lines and types of events will differ greatly; see Navarrete 2002. 
10 Each distribution has its own set of parameters; we used the “Best Fit” feature of the @Risk simulation 
package to find the distribution that best fits the data.  Other choices of distributions for this data set (ranked by 
the Chi-square statistic) were lognormal, exponential , and log-logistic distributions. 



 

# Events 100
# Months 22

λ 4,55

 
 
 
In a similar fashion, a discrete distribution may be fitted to the frequency data shown in 
Figure 5 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     Figure 5:  Frequency database    
 
 
 
 
 
 
    Figure 6:  Estimation of the Poisson Parameter ( ?)  

 
Figure 5 shows how the 100 events occurred in the time span of 22 months (ie. there were 4 
months with 2 fraud events, 4 months with 3 fraud events, etc.). This information is needed 
to fit a discrete distribution to the data.  Since in this example we just want to fit a Poisson 
distribution to the data (as is usually done in practice), we only need to know that the 100 
events occurred in 22 months, yielding an average rate of 4,55 events per month (Figure 6). 
Thus ? = 4,55 is the parameter of the Poisson distribution that will be used to simulate the 
frequency or arrivals of potential losses. 
 
 
Simulation Results   
 
Once both types of distributions have been identified, we use Monte Carlo simulation to 
generate different scenarios for frequency and severity of losses. The obtained aggregate 
loss distribution is shown below. 11 
 
 
                                                                 
11 A total of 10,000 loss scenarios were generated using the simulation package @Risk using the Latin 
hypercube method described above. 

Events 
per Month # Months

k n(k)
0 0
1 0
2 4
3 4
4 4
5 3
6 3
7 1
8 3

9 + 0
Total: 100 22

Frequency Table 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7:  Aggregate loss distribution obtained by simulation 
 
We first note from Figure 7 that the mean of the aggregate loss distribution, $ 5,944.36, is 
equal to the product of the means of the Pareto and Poisson distributions (ie. $ 1,306.5 x 
4,55 events/month), as the theory dictates.12   
 
Keeping track of units, this means an expected loss of $ 5,944 per month. This is the 
provisioning level that this bank should establish to cover “mean” or “average” losses 
incurred in its usual course of business due to external fraud in the credit card business line. 
 
To establish adequate capital reserves to cover unexpected losses, we simply consider 
percentiles of the aggregate loss distribution at different confidence levels (ie. VAR), and 
subtract the expected loss of $ 5,944.36 (note that the expected loss remains the same for 

                                                                 
12 In terms of Figure 2, if N is the Poisson (frequency) distribution, X is the Pareto (severity) distribution, and    
S is  the aggregate loss distribution, we have that E(S) = E(N)E(X). 



 
each confidence level).  The figure below shows the results obtained for several confidence 
levels.13 
 
 
Business Line: Credit Card
Event Type: External Fraud

Confidence 
Level

VAR (Percentile 
of Loss 

Distribution)

Expected 
Loss (EL)

Unexpected 
Loss (UL) Provisions 

Capital 
Requirement

95.0%      10,546.90 5,944.36          4,602.54 5,944.36             4,602.54 
99.0%      13,143.73 5,944.36          7,199.37 5,944.36             7,199.37 
99.9%      16,826.33 5,944.36       10,881.97 5,944.36          10,881.97 

Percentiles Losses Provisions and Capital 

 
 
Figure 8:  Provisions and capital requirements at different confidence levels  
 
Therefore, if this bank wants to cover average losses incurred in its usual course of business 
due to external fraud in its credit card unit, it should keep $ 5,944 as (one-month) provisions. 
However, if the institution also wants to protect the stability of its credit card business by 
establishing capital to serve as buffer against potential severe losses, it should keep an 
additional $ 10,882 in capital reserves (to be adequately covered at the 99,9 % level).  
 
In other words, if these reserves are not established, it could happen that in a single month in 
which there occur losses which combined yield a total amount of $ 16,826, this amount 
would have to be sent directly to P&L, affecting shareholders and equity. 14   
 
 
On Confidence Levels and Maximum Loss 
 
It turns out that simulation is also an excellent tool to get a better understanding of 
confidence levels. How are the losses at the 95 %, 99 % and 99,9 % confidence levels 
obtained via simulation ? 
 
The answer is straightforward: if, for example, 10,000 loss scenarios are generated, the loss 
amount corresponding to the 95 % confidence level is the 500th largest, when ordered from 
largest to lowest.15 
 
Figure 9 provides the order (rank) of losses at different confidence levels. 
 
 
 

                                                                 
13 Note that Figure 7 shows VAR at the 99 % level; capital requirement at the 99,9 % confidence level is the 
one suggested by Basel II.   
14 Note that the confidence level indicates that there is only a 0,1% chance of this happening. This is why many 
authors consider the Basel standard too strict and prefer confidence levels in the 95 % - 99 % range. 
15 ie. 10,000 - 10,000 (95 %). 



 
 
 

Confidence
Level Rank

99.9% 10
99% 100
95% 500  

 
Figure 9:  Loss ranks at different confidence levels (for 10,000 loss scenarios) 
 
Note from Figure 9 that there is substantial difference between losses at the 99 % and        
99,9 % confidence levels. Whereas the loss at the 99 % confidence level is the 100th largest, 
the one at the 99,9 % level is the 10th largest. That is, there are 90 loss amounts in-between 
generated by the simulation.  This could mean a difference of several thousand or millions of 
dollars in some cases. 
 
This brings us naturally to the question of the maximum loss. Whereas the estimation of 
this critical figure is a difficult theoretical issue (solved by methods such as those proposed 
by Extreme Value Theory), simulation readily offers an estimate, as the largest figure 
produced by the 10,000 loss scenarios.  In our example, the estimate is $ 19,364 (see Figure 
7).16 Even though this amount should not be taken as the exact figure for the maximum, it 
does offer a very valuable estimate.17   
 
 
Conclusion   
 
As we have seen, loss simulation results are transparent and easy to interpret.  Percentiles at 
different confidence levels are also very easy to visualize. Furthermore, simulation methods 
also provide estimates for the maximum loss, which are very difficult to obtain by traditional 
methods. 
 
In summary, simulation is a very convenient tool to generate the aggregate loss distribution 
and hence to obtain all the relevant statistics that are of critical importance for risk managers 
and regulators alike. 
 
 
 
 
 
 
 
 
                                                                 
16 The @Risk simulation program also yields information on the minimum loss, and on other useful indicators 
such as variance, skewness and kurtosis, that could serve, for instance, to test the degree of non-normality of 
the aggregate loss distribution.  
17 To obtain more estimates on the maximum loss, one would run more simulations (say, 5,000) to obtain a 
complete distribution for this parameter. The distributions obtained this way for the maximum are skewed and 
leptokurtic, as the theory dictates (see Navarrete 2006a). 
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