обеспечения для анализа рисков и принятия
решений, @RISK и DecisionTools Suite
Моделирование по методу Монте-Карло
|
Анализ риска — необъемлемая часть любого решения, которое мы принимаем. Мы постоянно сталкиваемся с неопределенностью, неоднозначностью и изменчивостью. И даже несмотря на беспрецедентно широкий доступ к информации, мы не можем точно предсказать будущее. Моделирование по методу Монте-Карло (также известное как метод Монте-Карло) позволяет рассмотреть все возможные последствия ваших решений и оценить воздействие риска, что обеспечивает более высокую эффективность принятия решений в условиях неопределенности.
Что такое моделирование по методу Монте-Карло? Каждый раз в процессе выбора направления дальнейших действий моделирование по методу Монте-Карло позволяет специалисту, принимающему решения, рассматривать целый спектр возможных последствий и оценивать вероятность их наступления. Этот метод демонстрирует возможности, лежащие на противоположных концах спектра (результаты игры ва-банк и принятия наиболее консервативных мер), а также вероятные последствия умеренных решений. Впервые этим методом воспользовалась ученые, занимавшиеся разработкой атомной бомбы; его назвали в честь Монте-Карло — курорта в Монако, известного своими казино. Получив распространение в годы Второй мировой войны, метод Монте-Карло стал применяться для моделирования всевозможных физических и теоретических систем. Как выполняется моделирование по методу Монте-Карло При использовании распределений вероятностей переменные могут иметь разные вероятности наступления разных последствий. Распределения вероятностей представляют собой гораздо более реалистичный способ описания неопределенности переменных в процессе анализа риска. Ниже перечислены наиболее распространенные распределения вероятностей. Нормальное распределение (или « гауссова кривая »). Чтобы описать отклонение от среднего, пользователь определяет среднее или ожидаемое значение и стандартное отклонение. Значения, расположенные посредине, рядом со средним, характеризуются наиболее высокой вероятностью. Нормальное распределение симметрично и описывает множество обычных явлений — например, рост людей. К примерам переменных, которые описываются нормальными распределениями, относятся темпы инфляции и цены на энергоносители. Логнормальное распределение. Значения имеют положительную асимметрию и в отличие от нормального распределения несимметричны. Такое распределение используется для отражения величин, которые не опускаются ниже нуля, но могут принимать неограниченные положительные значения. Примеры переменных, описываемых логнормальными распределениями, включают стоимость недвижимого имущества, цены на акции и нефтяные запасы. Равномерное распределение. Все величины могут с равной вероятностью принимать то или иное значение, пользователь просто определяет минимум и максимум. К примерам переменных, которые могут иметь равномерное распределение, относятся производственные издержки или доходы от будущих продаж нового продукта. Треугольное распределение. Пользователь определяет минимальное, наиболее вероятное и максимальное значения. Наибольшую вероятность имеют значения, расположенные возле точки максимальной вероятности. В число переменных, которые могут быть описаны треугольным распределением, входят продажи за минувший период в единицу времени и уровни запасов материальных оборотных средств. PERT-распределение. Пользователь определяет минимальное, наиболее вероятное и максимальное значения — так же, как при треугольном распределении. Наибольшую вероятность имеют значения, расположенные возле точки максимальной вероятности. Однако величины в диапазоне между наиболее вероятным и предельными значениями проявляются с большей вероятностью, чем при треугольном распределении, то есть отсутствует акцент на предельных значениях. Пример использования PERT-распределения — описание продолжительности выполнения задачи в рамках модели управления проектом. Дискретное распределение. Пользователь определяет конкретные значения из числа возможных, а также вероятность получения каждого из них. Примером может служить результат судебного процесса: 20% вероятность положительного решения, 30% вероятность отрицательного решения, 40% вероятность соглашения сторон и 10% вероятность аннулирования судебного процесса. При моделировании по методу Монте-Карло значения выбираются случайным образом из исходных распределений вероятности. Каждая выборка значений называется итерацией; полученный из выборки результат фиксируется. В процессе моделирования такая процедура выполняется сотни или тысячи раз, а итогом становится распределение вероятностей возможных последствий. Таким образом, моделирование по методу Монте-Карло дает гораздо более полное представление о возможных событиях. Оно позволяет судить не только о том, что может произойти, но и о том, какова вероятность такого исхода. Моделирование по методу Монте-Карло имеет ряд преимуществ по сравнению с детерминистским анализом, или анализом « по точечным оценкам»:
Вы также можете улучшить результаты моделирования по методу Монте-Карло путем проведения выборки с применением метода « латинский гиперкуб», в рамках которого отбор производится с большей точностью из всего интервала функций распределения. Продукты Palisade для моделирования |
130 East Seneca Street
Suite 505
Ithaca, NY 14850
800 432 RISK (US/Can)
+1 607 277 8000
+1 607 277 8001 fax
sales@palisade.com
+1 607 277 8000 x318
+54-1152528795 Argentina
+56-25813492 Chile
+507-8365675 Panamá
+52 55 5350 2852 México
+511-7086781 Perú
+57-15085187 Colombia
servicioalcliente@palisade.com
ventas@palisade.com
www.palisade-lta.com