Example Models
This model uses @RISK to illustrate that when several people with different prior beliefs all see the same random outcomes and use Bayes' rule to update their beliefs, they will all converge to the same "truth" in the long run.
This model uses @RISK simulation to find the distribution of the number of events in a fixed amount of time when the times between events are independent and identically distributed random variables.
This model illustrates how the central limit theorem can be used instead of the RiskCompound function when an output is the sum of a random number of random terms that might be correlated.
Copyright © 2019 Palisade. All rights reserved.
Palisade
130 East Seneca Street
Suite 505
Ithaca, NY 14850
800 432 RISK (US/Can)
+1 607 277 8000
+1 607 277 8001 fax
sales@palisade.com
130 East Seneca Street
Suite 505
Ithaca, NY 14850
800 432 RISK (US/Can)
+1 607 277 8000
+1 607 277 8001 fax
sales@palisade.com
Palisade Latinoamérica
+1 607 277 8000 x318
+54-1152528795 Argentina
+56-25813492 Chile
+507-8365675 Panamá
+52 55 5350 2852 México
+511-7086781 Perú
+57-15085187 Colombia
servicioalcliente@palisade.com
ventas@palisade.com
www.palisade-lta.com
+1 607 277 8000 x318
+54-1152528795 Argentina
+56-25813492 Chile
+507-8365675 Panamá
+52 55 5350 2852 México
+511-7086781 Perú
+57-15085187 Colombia
servicioalcliente@palisade.com
ventas@palisade.com
www.palisade-lta.com