Introduction to Engineering Reliability

Robert C. Patev
North Atlantic Division – Regional Technical Specialist
(978) 318-8394
Topics

• Reliability

• Basic Principles of Reliability Analysis
 – Non-Probabilistic Methods
 – Probabilistic Methods
 • First Order Second Moment
 • Point Estimate Method
 • Monte Carlo Simulation
 • Response Surface Modeling
• Reliability

- "Probability that a system will perform its intended function for a specific period of time under a given set of conditions"

\[R = 1 - P_f \]

- Reliability is the probability that unsatisfactory performance or failure will not occur
Reliability

Reliability and Probability of Failure

- Blue line: Reliability $R(t)$
- Pink line: Probability of Failure $F(t)$

Graph shows the relationship between time (years) and reliability/probability of failure.
• **Probability of Failure, “Pₚ”**
 – Easily defined for recurring events and replicate components (e.g., mechanical and mechanical parts)

• **Probability of Unsatisfactory Performance, P(u) “Pₚ”**
 – Nearly impossible to define for non-recurring events or unique components (e.g., sliding of gravity structures)
Reliability

pdf

Demand Capacity

value

P_f or P_{up}
Delivering Integrated, Sustainable, Water Resources Solutions

Reliability

\[
\mu_d \quad \mu_c
\]

\[
P_f \text{ or } P_{up}
\]
Reliability

Safety Margins

If limit at SM = C - D = 0
If limit at SM = C / D = 1

E(SM), σ(SM)

SM = Safety Margin

Pup

0 or 1
• **Basic Principles of Reliability Analysis**

 • Identify critical components
 • Use available data from previous design and analysis
 • Establish base condition for component
 • Define performance modes in terms of past levels of unsatisfactory performance
 • Calibrate models to experience
 • Model reasonable maintenance and repair scenarios and alternatives
• **Non-Probabilistic Reliability Methods**

 – Historical Frequency of Occurrence
 – Survivorship Curves (hydropower equipment)
 – Expert Opinion Elicitation
• **Probabilistic Reliability Methods**
 - Reliability Index (β) Methods
 - First Order Second Moment (Taylor Series)
 - Advanced Second Moment (Hasofer-Lind)
 - Point Estimate Method
 - Time-Dependent (Hazard Functions)
 - Monte Carlo Simulation
 - Response Surface Modeling
• **Historical Frequencies**

 – Use of known historical information for records at site to estimate the failure rates of various components

 – For example, if you had 5 hydraulic pumps in standby mode and each ran for 2000 hours in standby and 3 failed during standby. The failure rate during standby mode is:

 \[
 \text{Total standby hours} = 5(2000 \text{ hours}) = 10,000 \text{ hours} \\
 \text{Failure rate in standby mode} = 3 / 10,000 \\
 = 0.0003 \text{ failures per hour}
 \]
• Manufacturers’ survivorship/mortality curves
 – Curves are available from manufacturers’ for different motors, pumps, electrical components, etc...
 – Curves are developed from field data and “failed” components
 • Caution is to be exercised on mode of failure
 • Failure data may have to be censored
 – However, usually this data id not readily available for equipment at Corps projects except mainly hydropower facilities
 – Report available at IWR on hydropower survivorship curve as well as many textbooks on the subject
• **Expert Opinion Elicitation (EOE)**

 – Solicitation of “experts” to assist in determining probabilities of unsatisfactory performance or rates of occurrence.

 – Need proper guidance and assistance to solicit and train the experts properly to remove all bias and dominance.

 – Should be documented well for ATR/IEPR

 – Some recent projects that used EOE

 • John Day Lock and Dam – Dam Anchorage, NWP
• **Probabilistic Methods**

 – Reliability models are:
 • defined by random variables and their underlying distributions
 • based on limit states (analytical equations) similar to those used in the design of engineering components
 • based on capacity/demand or factor of safety relationships

 – One method is the Reliability Index or β method
Reliability

β Method - Normal Distribution

$\beta = \frac{E(SM)}{\sigma(SM)}$

- If limit at SM = C-D = 0

$\beta = \frac{(E(SM) - 1)}{\sigma(SM)}$

- If limit at SM = C/D = 1

$E(SM)$ is the expected value of Safety Margin (SM).

$\sigma(SM)$ is the standard deviation of Safety Margin (SM).

β is the reliability index.

Pup at SM = 0 or 1

SM = Safety Margin
• **Reliability Index (β) Methods**

 – **Taylor Series Finite Difference**
 (Cornell, 1969 and Rosenblueth, 1972)
 • First-order expansion about mean value
 • **Linear** approximation of second moment
 • Uses analytical equations (deflection, moment, stress/strain, etc…)
 • Easy to implement in spreadsheets
 • Requires 2n+1 sampling (n = number of variables)
 • Results in a Reliability Index value (β)
 – Based on E(SM) and σ (SM)
 • Problem: caution should be exercised on non-linear limit states
Taylor Series Finite Difference

Variable C

\[\mu_C + \sigma_C \]

\[\mu_B - \sigma_B \]

\[\mu_C - \sigma_C \]

FS = 0

Safe

Fai

Variable B
Reliability Example

• Determine the reliability of a tension bar using the TSFD reliability index (β) method

\[\text{Limit State} = \frac{F_t A}{P} \]
Reliability Example

- **Random Variables**

 - **Ultimate tensile strength**, F_t
 - mean, $\mu = 40$ ksi; standard deviation, $\sigma = 4$ ksi
 - assume normal distribution
 - **Load**, P
 - mean, $\mu = 15$ kips; standard deviation, $\sigma = 3$ kips,
 - assume normal distribution
 - **Area**, A
 - constant (no degradation) circular cross section, $A = 0.5$ in2
Reliability Example

• **Mean FS**
 - \(\mu_{FS} = \frac{40(0.50)}{15} = 1.333 \)

• **Standard Deviation FS**
 - \(\sigma_{FS} = \sqrt{\left(\frac{1.467 - 1.200}{2}\right)^2 + \left(\frac{1.111 - 1.667}{2}\right)^2} \)
 - \(\sigma_{FS} = \sqrt{0.134^2 + 0.278^2} \)
 - \(\sigma_{FS} = 0.309 \)
Reliability Example

• Reliability Index

\[\beta = \frac{E[SM] - 1}{\sigma[SM]} = \frac{0.333}{0.309} = 1.06 \]

\[P(u) = 0.14 \]

\[R = 1 - P(u) = 0.86 \]
• **Reliability Index** (β) **Methods**

• **Point Estimate Method**

 (Rosenblueth (1975))

 – Based on analytical equations like TSFD
 – Quadrature Method
 – Finds the change in performance function for all combinations of random variable, either plus or minus one standard deviation
 • For 2 random variables - ++, +-, -+, -- (+ or – is a standard deviation)
 – Requires 2^n samplings ($n =$ number of random variables)
 – Results in a Reliability Index value (β)
 • Based on $E(SM)$ and σ (SM)
Point Estimate Method

Figure from Baecher and Christian (2003)
Point Estimate Method

Figure from Baecher and Christian (2003)
• **Reliability Index (β) Methods**

 – **Advanced Second Moment**
 (Hasofer-Lind 1974, Haldar and Ayyub 1984)
 • Based on analytical equations like PEM
 • Uses directional cosines to determine shortest distance (β) to multi-dimensional failure surface
 • Accurate for non-linear limit states
 • Solved in spreadsheets or computer programs
Reliability

Random Variable, X2

C-D >0 Safe

C-D < 0 Fail

Random Variable, X1
• Reliability Index (β) Methods

• Shortcomings
 – *Instantaneous* - capture a certain point in time
 – Index methods *cannot* be used for time-dependent reliability or to estimate hazard functions even if fit to Weibull or similar distributions
 – Incorrect assumptions are sometimes made on underlying distributions to use β to estimate the probability of failure
• **Monte Carlo Simulation**

 – “Monte Carlo” is the method (code name) for simulations relating to development of atomic bomb during WWII

 • Traditional – static not dynamic (not involve time), U(0,1)
 • Non-Traditional – multi-integral problems, dynamic (time)

 – Applied to wide variety of complex problems involving random behavior

 – Procedure that generates values of a random variable based on one or more probability distributions

 – Not simulation method per se – just a name!
• **Monte Carlo Simulation**
 – Usage in USACE
 • Development of numerous state-of-the-art USACE reliability models (structural, geotechnical, etc.)
 • Used with analytical equations and other advanced reliability techniques
 • Determines P_f directly using output distribution
 • Convergence must be monitored
 – Variance recommend
Monte Carlo Simulation

- Reliability
 - Determined using actual distribution or using the equation:

\[R = 1 - P(u) \]

where, \(P(u) = \frac{N_{pu}}{N} \)

\(N_{pu} = \) Number of unsatisfactory performances at limit state < 1.0

\(N = \) number of iterations
• **Hazard Functions**
 – **Background**
 • Previously used reliability index (\(\beta \)) methods
 • Good estimate of relative reliability
 • Easy to implement
 • Problem: “Instantaneous” - snapshot in time
Hazard Functions/Rates

- Started with insurance actuaries in England in late 1800’s
 - They used the term mortality rate or force of mortality
- Brought into engineering by the Aerospace industry in 1950’s
- Accounts for the knowledge of the past history of the component
- Basically it is the rate of change at which the probability of failure changes over a time step
- Hazard function analysis is not snapshot a time (truly cumulative)
 - Utilizes Monte Carlo Simulation to calculate the true probability of failure (no approximations)
- Easy to develop time-dependent and non-time dependent models from deterministic engineering design problems
• **Typical Hazard Bathtub Curve**

![Bathtub Curve Diagram]

- **Burn-in Phase**
- **Constant failure rate phase**
- **Wear-out phase**

- **h(t)** vs. **Lifetime, t**

Lines:
- **Electrical**
- **Mechanical**
• Ellingwood and Mori (1993)

\[L(t) = \exp \left[-\lambda t \left[1 - \frac{1}{t} \int_{0}^{t} F_S(g(t)\,r) \, dt \right] \right] f_R(r) \, dr \]

- \(F_S \) = CDF of load
- \(g(t)\,r \) = time-dependent degradation
- \(f_R(r)\,dr \) = pdf of initial strength
- \(\lambda \) = mean rate of occurrence of loading

Closed-form solutions are not available except for few cases

Solution: Utilize monte carlo simulations to examine the “life cycle” for a component or structure
• **Hazard Functions**
 – Degradation of Structures
 • Relationship of **strength (R) (capacity)** vs. **load (S) (demand)**
• **Life Cycle**

![Diagram showing the Life Cycle process]

- **Initial Random Variables for Strength and Load**
- **Propagate variables for life cycle (e.g. 50 years)**
- **Run life cycle and document year in which unsatisfactory performance occurs**
- **Develop L(t), h(t)**

For I = 1 to N where N = number of MCS

Reinitialize with new set of random variables
Hazard Function (conditional failure rate)

- Developed for the ORMSSS economists/planners to assist in performing their economic simulation analysis for ORMSSS investment decisions

- \(h(t) = P[\text{fail in } (t,t+dt) | \text{survived } (0,t)] \)

- \(h(t) = \frac{f(t)}{L(t)} \)

= \(\frac{\text{No. of failures in } t}{\text{No. of survivors up to } t} \)
• Response Surface Methodology (RSM)

 Reliability is expressed as a limit state function, Z which can be a function of random variables, X_n, where

 $$Z = g(X_1, X_2, X_3, \ldots)$$

 and the limit state is expressed as

 $$Z = C - D > 0$$

 where D is demand and C is capacity.
Response Surface Methodology (RSM)

Reliability (in 2 variable space)

Safe \(C > D \)

Limit State Surface

Fail \(C < D \)
Response Surface Methodology (RSM)

– Utilizes non-linear finite element analysis to define to the response surface
– Not closed form solution but close approximation
– Constitutive models generally not readily available for performance limit states
 • Typical design equations generally are not adequate to represent limit state for performance
Response Surface Methodology (RSM)

- Accounts for variations of random variables on response surface
- Reflects realistic stresses/strains, etc. that are found in navigation structures
- Calibrated to field observations/measurements
- Develop response surface equations and use Monte Carlo Simulation to perform the reliability calculations

- Recent USACE Applications
 - Miter Gates (welded and riveted)
 - Tainter Gates
 - Tainter Valves (horizontally and vertically framed)
 - Alkali-Aggregate Reaction
Response Surface Methodology (RSM)
Response Surfaces

Concrete Strain in Anchorage Region vs Compressive Strength

- Strain (%)
- Time (years)
- 3600 psi
- 5000 psi
- 6400 psi
• Response Surface Methodology
 – Proposed Methodology for I-Wall Reliability

 • Assumptions
 – Poisson ratio – constant
 – Random variables – E, Su (G, K)

 • Limit state based on deflection (Δ) at ground surface

 • \(g(\Delta) = f(E, Su) = \frac{\Delta_{cr}}{\Delta} < 1.0 \)
Response Surface Modeling Concept (under development)

\[
\begin{align*}
(E_{\text{max}}, S_{\text{u min}}, \Delta 1) & \\
(E_{\text{max}}, S_{\text{u max}}, \Delta 2) & \\
(E_{\text{BE}}, S_{\text{uBE}}, \Delta 5) & \\
(E_{\text{min}}, S_{\text{u max}}, \Delta 4) & \\
(E_{\text{min}}, S_{\text{u min}}, \Delta 3) &
\end{align*}
\]

☆ Point of \(\Delta = \Delta_{cr} \)
Delivering Integrated, Sustainable, Water Resources Solutions

Reliability

• **Preferred Methods**
 – For non-time dependent reliability problems
 • Linear – Taylor Series Finite Difference, Point Estimate or Monte Carlo Simulation
 – Assume normal distributions for TSFD
 – Assume any distributions for MCS
 • Non-Linear – Advanced Second Moment or Monte Carlo Simulation
 – For time-dependent reliability problems
 • Hazard Function/Rates using Monte Carlo Simulation